
EADock: design of a new molecular docking algorithm

and some of its applications.

Thèse de doctorat ès science de la vie (PhD)

présentée à la

Faculté de biologie et de médecine

de l'Université de Lausanne

par

Aurélien Grosdidier

Diplômé de l'UFR de Pharmacie, Université Joseph Fourier, Grenoble, France

Jury

Prof. Yves Poirier, Rapporteur
Prof. Olivier Michielin, Directeur de thèse

Dr. Vincent Zoete, Expert Interne
Dr. Roland Stote, Expert Externe

Lausanne, 2007



EADock: design of a new molecular docking algorithm and some of its applications. 2/183



EADock: design of a new molecular docking algorithm and some of its applications. 3/183



EADock: design of a new molecular docking algorithm and some of its applications. 4/183



À Celui qui,

alors que nous ne pouvons qu'espérer les prolonger,

offre un sens à nos vies.
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3 Summary

3.1 English

The pharmaceutical industry has been facing several challenges during the last years, and 

the optimization of their drug discovery pipeline is believed to be the only viable solution. 

High-throughput techniques do participate actively to this optimization, especially when 

complemented by computational approaches aiming at rationalizing the enormous amount 

of information that they can produce.  In silico techniques, such as virtual screening or 

rational drug design, are now routinely used to guide drug discovery. Both heavily rely on 

the  prediction  of  the  molecular  interaction  (docking)  occurring  between  drug-like 

molecules and a therapeutically relevant target. Several softwares are available to this 

end, but despite the very promising picture drawn in most benchmarks, they still  hold 

several hidden weaknesses. As pointed out in several recent reviews, the docking problem 

is far from being solved, and there is now a need for methods able to identify binding 

modes with a high accuracy, which is essential to reliably compute the binding free energy 

of  the  ligand.  This  quantity  is  directly  linked  to  its  affinity  and can be related  to  its 

biological activity. Accurate docking algorithms are thus critical for both the discovery and 

the rational optimization of new drugs.

In this thesis, a new docking software aiming at this goal is presented, EADock. It uses a 

hybrid  evolutionary  algorithm  with  two  fitness  functions,  in  combination  with  a 

sophisticated  management  of  the  diversity.  EADock  is  interfaced  with  the  CHARMM 

package for energy calculations and coordinate handling. A validation was carried out on 

37 crystallized protein-ligand complexes featuring 11 different proteins. The search space 

was defined as a sphere of 15 Å around the center of mass of the ligand position in the 

crystal  structure,  and  conversely  to  other  benchmarks,  our  algorithms  was  fed  with 

optimized ligand positions up to 10 Å root mean square deviation (RMSD) from the crystal 

structure. This validation illustrates the efficiency of our sampling heuristic, as correct 

binding modes, defined by a RMSD to the crystal structure lower than 2 Å, were identified 

and ranked first  for  68% of  the  complexes.  The  success  rate  increases to  78% when 
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considering the five best-ranked clusters, and 92% when all clusters present in the last 

generation are taken into account. Most failures in this benchmark could be explained by 

the presence of crystal contacts in the experimental structure.

EADock has been used to understand molecular interactions involved in the regulation of 

the Na,K-ATPase, and in the activation of the nuclear hormone peroxisome proliferator-

activated  receptors α  (PPARα).  It  also  helped  to  understand  the  action  of  common 

pollutants (phthalates) on PPARγ, and the impact of biotransformations of the anticancer 

drug Imatinib (Gleevec®) on its binding mode to the Bcr-Abl tyrosine kinase. Finally, a 

fragment-based rational drug design approach using EADock was developed, and led to 

the successful design of new peptidic ligands for the α5β1 integrin, and for the human 

PPARα. In both cases, the designed peptides presented activities comparable to that of 

well-established  ligands  such  as  the  anticancer  drug  Cilengitide  and  Wy14,643, 

respectively.

3.2 French

Les récentes difficultés de l'industrie pharmaceutique ne semblent pouvoir se résoudre 

que  par  l'optimisation  de  leur  processus  de  développement  de  médicaments.  Cette 

dernière  implique  de  plus  en  plus  de  techniques  dites  “haut-débit”,  particulièrement 

efficaces lorsqu'elles sont couplées aux outils informatiques permettant de gérer la masse 

de données produite. Désormais, les approches in silico telles que le criblage virtuel ou la 

conception  rationnelle  de  nouvelles  molécules  sont  utilisées  couramment.  Toutes  deux 

reposent  sur  la  capacité  à  prédire  les  détails  de  l'interaction  moléculaire  entre  une 

molécule  ressemblant  à  un  principe  actif  (PA)  et  une  protéine  cible  ayant  un  intérêt 

thérapeutique. Les comparatifs de logiciels s'attaquant à cette prédiction sont flatteurs, 

mais plusieurs problèmes subsistent. La littérature récente tend à remettre en cause leur 

fiabilité,  affirmant l'émergence d'un besoin pour des approches plus précises du mode 

d'interaction. Cette précision est essentielle au calcul de l'énergie libre de liaison, qui est 

directement liée à l'affinité du PA potentiel pour la protéine cible, et indirectement liée à 

son activité biologique. Une prédiction précise est d'une importance toute particulière 

pour la découverte et l'optimisation de nouvelles molécules actives.
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Cette thèse présente un nouveau logiciel, EADock, mettant en avant une telle précision. 

Cet algorithme évolutionnaire hybride utilise deux pressions de sélections, combinées à 

une gestion de la diversité sophistiquée. EADock repose sur CHARMM pour les calculs 

d'énergie et la gestion des coordonnées atomiques. Sa validation a été effectuée sur 37 

complexes  protéine-ligand  cristallisés,  incluant  11  protéines  différentes.  L'espace  de 

recherche a été étendu à une sphère de 15 Å de rayon autour du centre de masse du 

ligand cristallisé,  et  contrairement aux comparatifs habituels,  l'algorithme est parti  de 

solutions  optimisées  présentant  un  RMSD  jusqu'à  10 Å  par  rapport  à  la  structure 

cristalline.  Cette  validation  a  permis  de  mettre  en  évidence  l'efficacité  de  notre 

heuristique de recherche car des modes d'interactions présentant un RMSD inférieur à 

2 Å par rapport à la structure cristalline ont été classés premier pour 68% des complexes. 

Lorsque les cinq meilleures solutions sont prises en compte, le taux de succès grimpe à 

78%, et 92% lorsque la totalité de la dernière génération est prise en compte. La plupart 

des erreurs de prédiction sont imputables à la présence de contacts cristallins.

Depuis,  EADock a été utilisé pour comprendre les mécanismes moléculaires impliqués 

dans  la  régulation  de  la  Na,K-ATPase  et  dans  l'activation  du  peroxisome  proliferator-

activated receptor α (PPARα). Il a également permis de décrire l'interaction de polluants 

couramment rencontrés sur PPARγ, ainsi que l'influence de la métabolisation de l'Imatinib 

(PA  anticancéreux)  sur  la  fixation  à  la  kinase  Bcr-Abl.  Une  approche  basée  sur  la 

prédiction des interactions de fragments moléculaires avec protéine cible est également 

proposée. Elle a permis la découverte de nouveaux ligands peptidiques de PPARα et de 

l'intégrine α5β1. Dans les deux cas, l'activité de ces nouveaux peptides est comparable à 

celles de ligands bien établis, comme le Wy14,643 pour le premier, et le Cilengitide (PA 

anticancéreux) pour la seconde.
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4 Abbreviation

3D Three Dimensional

ABNR Adopted Basis Newton-Raphson

API Application Programming Interface

CAPRI Critical Assessment of Prediction of Interactions

CHARMM Chemistry at HARvard Molecular Mechanics

CPU Central Processing Unit

DoF Degree of Freedom

EA Evolutionary Algorithm

EADock Evolutionary Algorithm for Docking

FB-RDD Fragment-Based Rational Drug Design

FDA Food and Drug Administration

GB-MV2 Generalized Born using Molecular Volume, analytical method 2

GBSA Generalized Born Surface Area

HTS High Throughput Screening

kcal Kilocalorie

LE Ligand Efficiency

MD Molecular Dynamics

MM Molecular Mechanics

MMFF Merck Molecular Force Field

MW Molecular Weight

NMR Nuclear Magnetic Resonance

PB Poisson-Boltzmann

PDB Protein Data Bank

RDD Rational Drug Design

RMSD Root Mean Square Deviation

ROI Region Of Interest

SASA Solvent Accessible Surface Area

SD Steepest Descent

vdW van der Waals

VS Virtual Screening
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5 Introduction

While the questions about the origin and purpose of life are very personal and have no 

clear social answers, the pragmatic consequences of life, among which are the ineluctable 

competition with other living forms and the fight against diseases and death, were always 

addressed by human societies  in  order  to  survive.  Science led to historical  successes 

resulting in a jump of life expectancy, for instance with the discovery of antibiotics. Many 

now think that the worst enemy of human beings are human themselves. It is certainly 

true that our personal behaviors can impact our health badly. This effect can be direct, 

e.g.  people  with  a  sedentary  lifestyle  are  more  at  risk  than  others  to  develop 

cardiovascular  diseases.  It  can  also  be  indirect,  through  toxic  compounds  that  were 

released around us, such as asbestos fibers causing lung cancers. While it is certainly 

worth focusing on our own behavior, such a human-centric point of view should not hide 

the dynamic of life itself, in which death is unavoidable. Even the benefit of a longer life 

expectancy  comes  at  the  price,  for  instance,  of  an  increase  of  the  incidence  of 

neurodegenerative diseases. Similarly, each fight won with antibiotics remains fragile, as 

resistant bacterial strains are already a major concern, especially in hospitals.

More  efficient  medicines  are  certainly  required  to  face  these  challenges,  as  well  as 

possible yet still unknown threats in the coming years, keeping in mind that the armament 

race against death is already lost, focusing on diseases with humility, with the hope to 

make life better and possibly longer.

5.1 Toward new drugs

The  development  of  a  new drug,  from the  identification  of  a  biological  target  to  the 

patient, is a multi-step process that can be roughly split into pre-clinical development and 

clinical trials (see Table 1).

The goal pursued during the pre-clinical development is to identify and optimize a lead 

compound regarding to a targeted biological activity. This requires the investigation of its 

pharmacodynamics and pharmacokinetics properties, and often starts with in silico assay, 
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which are then pushed in vitro and ultimately in vivo in cells and model organisms.

Once the lead compound reaches a satisfying activity and safety,  and once its galenic 

formulation is defined, the three phases of clinical trials successively starts. Their first 

goal is to check that the compound is not harmful for humans (phase 1). The dose-effect 

relation is then deeply investigated (phase II), before the definitive assessment of the drug 

on  1000  to  3000  volunteers  patients  (phase  III).  Once  on  the  market,  the 

pharmacovigilance  stage  (phase  IV)  starts,  aiming  at  the  detection,  assessment, 

understanding and prevention of adverse effects, particularly long term and short-term 

side effect.

Taking about twelve years, the development of a new drug is increasingly costly, and was 

estimated to USD $359 in 1993 as reported by the Congressional Office of Technology 

Assessment1, USD $897 millions in the late 90s [1]. Last year, a study of the Tufts Center 

for the Study of Drug Development even mentioned USD $1.2 billion dollars to develop a 

new biotechnology product2. This study also reported that the costs of clinical trials and 

pre-clinical  development  are  similar  (USD  $625  millions  and  USD  $615  millions, 

respectively).

While these costs are increasing, the pharmaceutical industry has been facing several 

challenges during the last two years [2], resulting in numerous merging/acquiring guided 

1 http://www.allp.com/drug_dev.htm  

2 http://csdd.tufts.edu/NewsEvents/NewsArticle.asp?newsid=69  
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Table 1: developing drugs: a multi step process. Adapted from Dale E. Wierenga and C.  

Rovert Eaton, Office of Research and Development, http://www.allp.com/drug_dev.htm

Clinical trial Pharmacovigilance

Phase I Phase II Phase III Phase IV

Years 3.5 1 2 3

Purpose

5 enter trials

Preclinical 
development 

Additional post 
marketing testing 
required by FDA

Test 
Population

Laboratory and 
animal studies

20 to 80 
healthy 

volunteers

100 to 300 
patient 

volunteers

1000 to 3000 
patient 

volunteers

Assess safety and 
biological activity

Determine 
safety and 

dosage

Evaluate 
effectiveness, 
look for side 

effects

Verify 
effectiveness, 

monitor adverse 
reactions from 
long-term use

Success 
Rate

5,000 compounds 
evaluated

http://www.allp.com/drug_dev.htm
http://csdd.tufts.edu/NewsEvents/NewsArticle.asp?newsid=69
http://www.allp.com/drug_dev.htm


by short-term considerations [3]. This should not hide that the key for finding long-term 

solutions is likely to be the optimization of the drug development pipeline [4].

This optimization should aim at driving along the shortest path toward drug delivery to 

the  patient  [5],  filtering  out  unlikely  directions  and  focusing  on  the  most  promising 

projects [6]. Such a speedup of the drug development process would also lead to a better 

reactivity  against  new threats,  cheaper  drugs,  and  hopefully  the  development  of  new 

drugs for orphan diseases.

One of the methods to implement such an optimization is called translational research3, 

where the usual  “bench-to-bed” one-way processing of biological/medical  knowledge is 

replaced by a two-way communication. In such a multidisciplinary research environment, 

biological and medical knowledge goes back from in vivo to in vitro to in silico. A general 

trend is to allow an early clinical phase to take place for infinitesimal doses of a drug 

under development, in order to examine with care and accuracy its pharmacokinetics and 

pharmacodynamics properties and identify potential issues  [7]. While communication by 

itself  is not the magic bullet,  it is likely to help rationalizing the enormous amount of 

information  (and  noise)  that  can  be  generated  by  the  ever-increasing  and  highly-

recommended usage of high-throughput methods at all stages [5].

During the last ten years, such methods were increasingly used in two directions. High-

throughput  techniques  are  now used to  identify  new biologically  relevant  targets  [8], 

particularly with the development of microarray techniques in genomics and proteomics 

projects.  The  resulting  explosion  of  biological  targets  comes with  the  development  of 

other high-throughput methods aiming at designing active compounds more efficiently, 

involving  pharmaco-  and  toxicogenomics,  experimental  medicine  [8],  and  of  course 

computational chemistry. The many roles of computational chemistry in drug design are 

reviewed in  [9] and encompass virtual  screening,  de novo design,  evaluation of  drug-

likeness and the determination of protein-ligand interaction.

3 http://nihroadmap.nih.gov/clinicalresearch/overview-translational.asp  
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5.2 The docking problem

5.2.1 Statement

The  interaction  between  molecules  is  the  key  of  most,  if  not  all,  biological  events. 

Molecular  details  of  such interactions  are  of  major  interest  and can be characterized 

experimentally  using  X-ray  crystallography  or  NMR.  Unfortunately,  the  overwhelming 

number  of  different  molecules  in  a  single  cell  makes  an  exhaustive  experimental 

determination of all these interactions by far out of reach. Starting from the structures of 

unbound molecules,  in silico molecular docking is an attempt to predict the structure of 

the corresponding complex. Such a computational approach is considerably easier to set 

up,  cheaper  and  faster  than  the  experimental  methods  mentioned  above.  Docking 

softwares are valuable tools in pharmacy and medicine, as most drugs are small molecules 

(ligands)  designed  to  interact  with  biologically  relevant  target  proteins  (receptors)  in 

order to act on the biological pathway they are involved in. This thesis focuses on this 

particular aspect of molecular docking.

In  this  introduction,  the  docking  problem  is  stated  and  some  common  answers  are 

summarized.  The  five  most  cited  softwares  are  briefly  introduced,  together  with  the 

performance one can expect from such tools. Several challenges for the years to come are 

then presented, as well as two applications of docking softwares in drug design.

An overview of a typical docking procedure is shown in Figure 2. The first step is to obtain 

a structure for the receptor, by X-ray crystallography, NMR, or modeling techniques. The 

more accurate the physical description of this structure, the more relevant, accurate and 

useful the predicted binding mode (see Figure 1).

Therefore, it should be checked carefully regarding to two aspects. First, the structure 

should correspond to a biological conformation that is relevant to the targeted biological 

mechanism. For instance, the presence of crystal contacts in X-ray structures should be 

verified, as well as the impact of the presence/absence of other interacting partners such 

as cofactors. Second, the quality of the structure should be verified at an atomic level. For 

instance, the docking of a ligand is likely to fail  if  the region encompassing its native 
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binding mode includes unresolved atoms, has a poor sequence identity with the template 

structure (if created by homology modeling), or encompasses flexible residues (reflected 

by  a  high  B-factor  if  the  structure  has  been  determined  by  X-ray,  or  multiple 

conformations if determined by NMR).

If such issues are identified,  they have to be addressed during the preparation of the 

structures for the docking. The latter also includes the resolution of steric clashes, or the 

assignment of protonation state. The conformation of the ligand is usually optimized by 

the docking software, and is thus usually not critical. Once both structures are prepared, 

the  docking software can be used with ad hoc parameters to propose one or  several 

putative binding modes, which can be further investigated.
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Figure  1: Side view of the experimentally determined binding mode of the anticancer  

drug Cilengitide (ball and stick) on the surface of its biological target, the αVβ3 integrin. 

Binding modes predicted with the algorithm presented in this thesis are shown in green  

sticks.  The  accuracy  of  such  predictions  opens  the  field  of  structure-based  rational 

optimizations of the active compound.



5.2.2 Theoretical problems and methodological answers

To be successful, docking softwares must be able to generate several binding modes and, 

among  them,  recognize  the  native  one.  Docking  can  be  thus  considered  as  the 

optimization of structural and energetic criteria described by a scoring function given a 

set of degrees of freedom corresponding to the ligand and the receptor conformations and 

their  relative  positions.  This  simple formulation should not  hide the two challenges  it 

contains.  The  first  challenge  comes  from  the  size  of  the  search  space,  which  grows 

exponentially  with  the  number  of  degrees  of  freedom  of  the  system.  Its  exhaustive 

exploration  is  thus  not  feasible,  and  all  methods  primarily  rely  on  heuristic  sampling 

techniques to generate binding modes,  which must be carefully  designed.  The second 

challenge is to define a scoring function able to pinpoint the native binding mode among 
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Figure 2: Typical docking pipeline. See text for details.
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all the ones that are generated.

5.2.2.1 Sampling heuristics

As mentioned above, several sampling heuristics are used to face the complexity of the 

search space [10]. They can be classified in three families: approaches derived from a so-

called  systematic  search,  molecular  dynamics  simulation  techniques,  and  stochastic 

methods.  Systematic  search  methods  would  be  too  costly  to  be  applied  directly,  but 

several approaches use them in combination with either filtering techniques [11] or with 

an incremental reconstruction of the ligand. The general principle of the latter is to split 

the ligand in rigid and flexible fragments: one  [12] [13] [14] or several  [15] [16] rigid 

fragments  are  docked  on  the  surface  of  the  protein  and  the  ligand  is  reconstructed. 

Standard  molecular  mechanics  simulation  techniques  (molecular  dynamics  and 

minimization)  are  appealing  because  of  their  physical  foundations,  but  are  time 

consuming  and  not  effective  at  crossing  high  free  energy  barriers  within  accessible 

simulation time [17]. However, the reduction of van der Waals and electrostatic repulsions 

was found to improve the sampling by lowering conformational transition energy barriers 

[18] [19].  Stochastic  methods (Monte  Carlo,  genetic  algorithms,  and tabu search)  are 

general optimization techniques with a limited physical basis, and are able to explore the 

search space ignoring energy barriers.

Evolutionary  algorithms  (EA)  are  generic  iterative  stochastic  optimization  procedures 

mimicking the adaptive process of natural evolution, classified as artificial  intelligence 

techniques  (this  latter  also  encompass  neurocomputing  and  fuzzy  system).  On  the 

contrary to most optimization techniques, they focus on several putative solutions at the 

same time, in a so-called population (see Figure 3).

Briefly, this population is subjected to a selection process, implemented as an objective (or 

fitness) function describing the problem to optimize, usually involving many degrees of 

freedom (DoF). The collection of values of each DoF of a solution defines its “genes”.
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The selection of the fittest solutions (called parents) according to this objective function is 

counterbalanced by the generation of new solutions (called children) in order to maintain 

diversity  in  the  population.  Such an offspring  is  generated  by modifying the  parental 

genes thanks to so-called operators, which can be classified depending on the number of 

parents needed to create a new solution. Operators modifying a single parent to create a 

child are called mutations, while operators combining two or more solutions into a single 

child  are  called  recombinations.  In  Lamarckian  genetic  algorithms,  a  local  search  is 

performed around children that are created by operators, enhancing the efficiency of the 

search [20]. This modification of the solution can be viewed as a phenotype modification 

that is then introduced back in the genome.

Once offspring are generated, it replaces the worst solutions of the population. The latter 

is  then exposed again  to  the fitness  function,  and the evolution  goes on for  the  next 

iteration (generation). As the number of generations increases, the average fitness of the 

population  of  solutions  is  supposed  to  increase,  and  several  highly  fit  solutions  are 

expected to appear.

Interestingly, no problem-dependent algorithmic adaptations are needed, even when the 

fitness function is discontinuous and noisy. Such versatility made EA suitable for various 

problems, where they can be used as black box optimization procedure. However, these 
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Figure 3: Schematic representation of a typical evolutionary cycle taking place in EA. See  

text for details.
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naïve approaches can also be combined with problem-specific  knowledge to drive the 

search more efficiently, for instance by using semi-stochastic operators or a local search 

adapted  to  the  underlying  energy  landscape,  if  the  latter  can  be  at  least  roughly 

described. Such approaches are called hybrid evolutionary algorithms, and have proven to 

be much more efficient [21].

When  applied  to  the  docking  problem,  the  fitness  function  describes  the  interactions 

between  the  ligand  and  the  receptor.  This  optimization  is  performed  by  varying  the 

degrees  of  freedom  related  to  the  ligand  and  receptor  positions,  orientations  and 

conformations. During the evolutionary cycle, worst solutions are likely to be replaced by 

children,  created  from  parents  selected  among  the  fittest  solutions.  This  process  is 

repeated until a convergence has been reached in the population, or after a fixed number 

of generations. Evolutionary algorithms require a balance between diversity and selection, 

controlling the distribution of solutions in the search space, so that they can efficiently 

speculate on new solutions with expected improved fitness.  A high diversity combined 

with a slow renewal rate of the population leads to a robust and slow algorithm, roughly 

similar to a Monte-Carlo search. Conversely, a low diversity with a fast solution turnover is 

likely to cause a premature convergence [22]. This sampling bias, which can be controlled 

by evolutionary parameters, is a very powerful aspect of evolutionary algorithms, as they 

can be tuned according to the complexity  of the problem to solve.  Two limits can be 

pointed out. First, this biased sampling does not follow a Boltzmann statistic, and thus 

does not provide direct insights into the thermodynamical properties of a system, such as 

its  binding  free  energy.  Secondly,  evolutionary  algorithms  extensively  use  stochastic 

elements, and consequently, finding the optimal solution is not guaranteed within a finite 

period  of  time.  More  efficient  hybrid  approaches  [21],  in  which  problem-specific 

knowledge is used to drive evolution, are now widely used for docking [20] [23] [24]. Most 

of  them use the efficient  stochastic search of  evolutionary algorithms to cross energy 

barriers and obtain rough minima, which are subsequently refined by a local search like 

energy minimization [20].

Several recent publications  [25] [26] [27] introduced a two-step approach reducing the 

complexity of the docking problem. First, putative binding pockets are identified, in which 
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the ligand conformation is optimized. These approaches were reported to be very efficient 

for virtual screening (VS)  [28], but this work has been heavily criticized recently  [29]. 

Moreover,  it  is  anyway  not  relevant  for  rational  drug  design  (RDD),  which  aims  at 

designing a  ligand in  order  to  achieve a  high specificity  for  a  predetermined binding 

region.

5.2.2.2 Scoring functions

In addition to sampling issues, a common bottleneck of docking programs is the scoring 

function,  responsible for driving the search, discriminating and ranking the generated 

binding  modes  [10].  The  ideal  score  would  be  the  free  energy  of  the  ligand-receptor 

association [30] [31], as it would make the ranking of different ligands possible, which is 

of major importance for VS. Since we are interested in ranking different binding modes of 

one given ligand on the surface of a given protein, relative free energies of association 

would be sufficient.  Unfortunately,  such calculations are currently  too computationally 

demanding. As VS usually implies several thousand dockings to enrich a database, there is 

a need for fast scoring functions and necessary approximations. Conversely, RDD requires 

a  very  accurate  but  computationally  expensive  scoring  to  reliably  predict  the  binding 

mode for a few tens of complexes. A scoring function must be both efficient and selective 

[19]: it must be able to drive the search as smoothly as possible (i.e. provide an energy 

gradient), as well as able to identify the correct binding mode in a set of decoys (i.e. this 

correct  binding  mode  should  have  an  energy  lower  than  those  fake  binding  modes). 

Scoring  functions  can  be  classified  into  three  families:  empirical  scoring  functions, 

knowledge-based, and force field based scoring functions. Empirical scoring function are 

expressed as a weighted sum of terms arising from given molecular interactions, such as 

hydrogen bonds, ionic and van der Waals interactions [32] [33]. The weighting factors are 

fitted on a database of complexes with known structures and binding free energies. Their 

transferability to complexes outside the training database is thought to be more limited 

compared to force field-based scoring functions. The second family is based on potentials 

of mean force that are derived from large datasets of experimental 3D structures [34] [35] 

[36] [37] [38]. The third family of scoring functions is based on molecular mechanics force 
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fields, summing the interaction energy and the internal energies of both partners, and 

ideally  taking  into  account  the  solvent  effect.  If  the  protein  is  kept  rigid,  its  internal 

energy does not change and can be ignored,  speeding up the evaluation of a binding 

mode. These scoring functions are usually sensitive to atomic coordinates, limiting their 

applications  in  cross-docking  experiments  [39].  Softened  van  der  Waals  potentials,  in 

which  the  contribution  of  the  repulsive  term  is  limited  to  allow  some  steric  clashes 

without  penalizing  too  much  the  corresponding  binding  mode,  have  the  advantage of 

being less sensitive to atomic coordinates in these cases, but also suffer from being less 

selective [40]. As force field-based scoring functions are not trained on a set of complexes, 

a good transferability to real world applications can be expected. As an example of this 

third family, two docking approaches using the CHARMM  [41] package were published 

previously: DARWIN [24] and CDOCKER [18].

No perfect scoring functions has been found yet (see below), and it has been shown that a 

consensus  scoring,  filtering  docking  results  using  several  scoring  functions,  lead to  a 

considerable  reduction  of  unrealistic  docking  modes  that  may have a  favorable  score 

according to a given score [42].

5.2.3 Modeling molecular interactions

The noncovalent, reversible association of receptor (R) and ligand (L) to form a receptor-

ligand  complex  (RL)  generally  occurs  in  an  aqueous,  electrolyte-containing  solution 

(Equation 1):

Under  equilibrium,  this  reaction  is  determined  by  the  standard Gibb's  free  energy  of 

binding  ΔGº.  This  quantity  is  related  to  the  experimentally  determined  association 

constant KA and KD defined in Equation 2 by Equation 3, and is composed of an enthalpic 

(ΔHº) and an entropic (TΔSº) contributions (T refers to the absolute temperature).
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The CHARMM molecular  mechanics  force  field  [43] is  an all-atom empirical  potential 

energy function for molecular modeling and dynamics studies of proteins.  This energy 

function includes bounded and non-bounded contributions, as described in Table 2.

Bond length stretching is modeled by an harmonic potential, where r is the bond length,

r
0 the  equilibrium  distance  and k

r the  bond-stretching  force  constant.  Bond  angle 

bending is also modeled by an harmonic potential, where  is the bond angle, 
0 the 

equilibrium value and k  the angle bending force constant. The torsion of the dihedral 

angles is modeled by a cosine expansion, where  is the dihedral angle, k its force 

constant,  n  its multiplicity and  its phase. The non-bonded interactions between two 
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Table 2: Energy terms used in CHARMM.
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atoms (here named i and j) are modeled using a Coulomb potential term for electrostatic 

interactions and a Lennard-Jones potential for van der Waals interactions, where q i and 

q j are  the  atomic  charges  of  atoms  i and  j, 
ij the  dispersion  well  depth, 

ij the 

Lennard-Jones diameter, r
ij the non-bonded distance and  the dielectric constant.

The  sum  of  those  terms  gives  the  complete  functional  form  of  the  total  CHARMM 

enthalpy, shown in Equation 4.

The analytical Generalized Born model (GB-MV2)  [44] [45] can be used to calculate the 

electrostatic  solvation  energy,  ∆Gelec,solv .  This  model  was  found  to  reproduce  the 

solvation free energies calculated by solving the Poisson equation with 1 % accuracy. The 

Poisson method for obtaining solvation energies is generally considered a benchmark for 

implicit solvation calculations. However, GB-MV2 is much faster than solving the Poisson 

equation (by a factor of about 20) and is therefore very useful to calculate ∆Gelec,solv for 

a  large  number  of  structures  or  conformations,  and  was  used  in  this  study.  The 

Generalized Born equation has the  following  functional  form,  where  is  the  relative 

permittivity of the medium (solvent), and q i and q j are the atomic charges of atoms i  

and j, r
ij is  the  interparticule  distance,  i and   j the  atoms  Born  radii  and

Dij=
r ij

2

K si j
with K

s being a constant set to 8.
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5.3 Molecular docking: state of the art

5.3.1 Common implementations

More than 30 programs are currently available [46] and most of them are dedicated to VS. 

The five most frequently cited ones represent 65% of the citations found in the literature: 

AutoDock (27%) [20], GOLD (15%) [23], FlexX (11%) [47], DOCK (6%)[12] and ICM (6%) 

[48]. Interestingly, the two most cited docking softwares AutoDock and GOLD are based 

on  evolutionary  algorithms,  providing  a  convenient  way  to  implement  separately  the 

sampling heuristic and the scoring function, and in both, the latter is based on a force 

field. This direction thus seems to be promising.

5.3.1.1 AutoDock

AutoDock is by far the most cited implementation, with 27% of the citations gathered. 

Conversely  to  the  four  others  most  cited  softwares,  its  citation  share  has  increased 

regularly between 2001 and 2005. It relies on a Lamarckian genetic algorithm combined 

with  a  scoring  function  based  on  the  AMBER  force  field  [49],  and  is  known  for  its 

robustness and accuracy [46] [50]. This flexible software is available for free for academic 

usage, and is thus often used to investigate new aspects of docking and implement new 

ideas [51] [52] [53] [54].

5.3.1.2 Gold

The second most cited implementation is GOLD (15%). Interestingly, it also combines a 

genetic algorithm and a force field based scoring function. It reaches a very good success 

rate on one of the most comprehensive available test set of complexes [55], but systematic 

problems are reported for polar ligands and the docking inside large cavities [56].
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5.3.1.3 FlexX

The program FlexX comes third, with 11% of the citations. Its sampling heuristic is based 

on an incremental reconstruction of the ligand using docked fragments as anchors, and its 

empirical scoring function takes into account entropic, hydrogen-bonding, ionic, aromatic 

and lipophilic terms. The four latter are scaled by heuristic distance and angle-dependent 

penalties functions [34] [57]. Its speed comes at the price of a limited performance when 

docking very flexible ligands [56].

5.3.1.4 DOCK and ICM

DOCK and ICM both represent 6% of the citations each. The former performs a sampling 

similar  to  FlexX,  which  is  very  fast.  Its  scoring  function  does  not  contain  explicit 

hydrogen-bonding, nor solvation/desolvation, nor hydrophobicity terms, and its accuracy 

is  limited  [46].  Several  extensions are available,  e.g.  the docking to multiple  receptor 

structures to account for the flexibility of the protein  [58] or a scoring with the GBSA 

solvation model [59].

ICM is based on Monte Carlo minimization in the internal coordinates space. Its scoring 

function is based on ECEPP/3  [60], which estimates the entropy of the side chains, and 

contains  an approximated electrostatic  solvation  term  [61].  It  was found satisfying at 

docking and enriching [28] [57].

5.3.2 Benchmarking benchmarks

Docking  programs  are  regularly  benchmarked  [62] [63].  A  Critical  Assessment  of 

Prediction of Interactions (CAPRI,  http://capri.ebi.ac.uk/) was launched in 2001, but only 

addresses protein-protein  interactions.  Setting up a fair  comparison between different 

docking softwares is not trivial  [64] although the docking of small molecule into protein 

docking might be significantly helped by such a contest  [65]. A fair benchmark should 

address the points below.
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5.3.2.1 Experts

With a few notable exceptions [62] [63], small molecules-protein docking benchmarks are 

carried out by experts who are often involved in one of the benchmarked algorithms [64]. 

Since experience is required to get out the most of a docking software [63], their superior 

knowledge about their own tool may bias comparisons. It also raises a few concerns about 

their independence, as companies are very active in this field [66].

5.3.2.2 Test sets

According to  [64], the ideal test set should not be biased toward a given protein family. 

Instead,  it  should  be  large  enough  to  span  representative  high-resolution  complexes, 

curated to remove or repair errors such as steric clashes or crystal contacts. Complexes 

with missing residues or covalent bonds should be avoided. Binding data (such as KD or 

IC50)  should  be  available  for  each  complex.  The  benchmark  of  programs  using  fitted 

objective functions should not be performed on the same test set used for its training. 

Instead, the database should be partitioned in a training set and test set.

Four databases meeting these criteria can be suggested: LPDB  [67],  CCDC/Astex  [55], 

PDBbind [68] and BindingMOAD [69]. They contain approximately 260, 300, 290 and 470 

curated complexes, respectively.

5.3.2.3 Comparable and large search space

For  a  fair  comparison,  all  programs should  have  comparable  definition  of  the  search 

space. The definitions of the region of interest explored by the different programs must be 

similar.  If  too small, no clear conclusions can be drawn about the performance of the 

sampling heuristic [64] [70], and scoring failure may also be hidden, as a more thorough 

sampling  might  have  led  to  binding  modes  with  a  more  favorable  score,  as  recently 

discussed in [70]. All programs should face a similar set of degrees of freedom, such as 

rotations  and  translations,  dihedral  angles,  bond  lengths  and  bond  angles.  The  same 

structural information such as the presence of water molecules or specific protonation 

states, if any, should be used by all programs when they take account of it.
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5.3.2.4 Comparable seeding

All programs should be fed with similar conformations. It was recently suggested that the 

randomization of the degrees of freedom should be biased toward energetically favorable 

solutions, with a minimal distance to the crystal structure, to demonstrate the ability of 

the scoring function to discriminate between different energetically favorable minima [70] 

and highlight the efficiency of the sampling heuristic [64], respectively.

5.3.2.5 Number of evaluated poses and CPU time

All  programs should be compared in their  latest available version,  and the number of 

evaluated poses and CPU time should be considered.

5.3.2.6 Outcome

Even if a fair comparison is set up, recognizing how successful a prediction is not trivial. A 

maximum  RMSD  to  the  experimental  structure  is  usually  used  to  define  a  correct 

prediction,  but  it  does  not  reflect  how  realistically  the  molecular  interactions  are 

reproduced  [71]. This observation led to the IBAC classification of success and failure, 

which is based on the presence of key interactions between the ligand and the receptor 

[71]. Unfortunately, it requires a tedious manual inspection of the experimental structure 

of each complex. The RMSD is thus widely used, a success being reported if the predicted 

binding mode fall within 2 Å RMSD to the native structure. The reader should also not 

forget that the experimental structure used as a reference is only an average structure.

Two different reasons can explain docking failures. When the native binding mode is not 

even sampled, a sampling failure is reported. When the native binding mode is generated, 

but  not  correctly  discriminated  among  the  numerous  decoys  also  sampled,  a  scoring 

failure is reported.

5.3.3 Performance Benchmarks

A recent critical assessment of 37 scoring functions with 10 docking programs (each of 
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them with several docking protocols), was carried out on eight pharmaceutically relevant 

targets  [62], each of them with up to 200 ligands. When considering the most efficient 

protocol and all binding modes proposed by docking programs, at least one of them was 

able to dock more than 40% of the known and crystallized ligands investigated within 2 Å 

RMSD to the crystal structure for 7 out of their 8 targets. It also appears that for several 

targets, this success rate increases up to 90% and 100% when considering RMSD to the 

crystal structure lower than 2 Å or 4 Å, respectively. This promising result was obtained in 

reasonably  fair  yet  optimal  conditions,  involving  computational  chemists  with  either 

expertise in each particular protein target or expertise in a particular docking algorithms. 

Authors concluded that docking algorithms were able to explore conformational  space 

sufficiently well to generate correctly docked poses, despite big variations depending on 

the  target  protein.  They  also  observed  that  scoring  functions  were  less  successful  at 

distinguishing the crystallographic  conformation from the set  of  docked poses,  as  the 

performance observed was much lower when considering only the top ranked binding 

mode.

All in all, it seems that there are no universally efficient docking program yet  [62] [72], 

although some of them seem to be consistently better than others, such as GOLD [73]. In 

a real world prediction, several of them should be used and their predictions should be 

compared. The reader should also keep in mind that a key aspect of performance that has 

not  been  addressed  yet  is  the  statistical  significance  of  the  different  accuracies  of 

benchmarked softwares [64].

5.4 Docking challenges

“Despite the very promising picture drawn, molecular docking still holds several hidden 

weaknesses, and the so-called docking problem is far from being solved” [46]. The general 

impression  is  one  of  inconsistent  performance  in  combination  with  a  trend  toward 

improvement  [74].  This  is  supported  by the  recent  benchmark mentioned above  [62], 

where  docking  seems  to  have  reached  a  plateau  and  is  waiting  for  an  important 

breakthrough  [65].  Both  scoring  functions  and  sampling  heuristics  are  facing  big 

challenges in the years to come.
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5.4.1 Scoring functions

Strangely,  a  recent  study  reported  the  success  of  a  docking  program able  to  predict 

complexes correctly even though the ligand protonation state does not correspond to the 

experimental  structure  [75],  whereas  it  is  known that  protonation  has  a  considerable 

influence on the orientation of a docked ligand [76]. Similarly, the docking of ligands into 

rigid  receptors  that  have  been  crystallized  with  another  ligand  was  reported  to  be 

successful  [57] even though the atomic description of the binding site was known to be 

wrong. Such suspicious performances open the question about scoring functions [76]: how 

could they discriminate between a good and a bad binding mode if a binding mode known 

to  be  wrong  is  recognized  as  the  good  one  ?  In  fact,  most  docking  failures  can  be 

attributed to scoring functions  [62]. An explanation is that many docking tools are used 

for VS (see below). Their scoring functions must be fast and require a detrimental level of 

approximations.  The  different  scoring  functions  available  today  are  at  best  weakly 

correlated with the binding free energy  [77], which would be the ideal scoring function 

especially for VS, and most of the time, no correlation can be observed [62] [65].

5.4.1.1 Usual methods evaluating the binding free energy

Several exact methods calculating the binding free energy are available, among which 

thermodynamic integration (TI) and free energy perturbation (FEP). They are by far too 

slow  to  be  combined  routinely  with  the  sampling  heuristic  performed  by  docking 

softwares. The binding free energy can also be estimated by approximate methods based 

on  the  sampling  of  several  conformations  (such  as  LIE,  MM-PBSA,  MM-GBSA). 

Unfortunately,  calculating  trajectories  for  each  putative  binding  mode  to  average 

thermodynamical quantities is also too slow.

To  cope  with  the  throughput  required  by  VS,  most  scoring  functions  available  today 

evaluate a single binding mode without further sampling. This relies on the assumption 

that only this one is significantly occupied [77]. This particularly impacts force field based 

scoring functions, which are sensitive to small variations of atomic coordinates [39], and 

there is a great interest in new and more accurate scoring functions bridging the gap 
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between  the  costly  binding  free  energy  calculations/estimations  and  current  scoring 

functions [62] [65].

5.4.1.2 Accounting for the entropy

Even in the most sophisticated scoring functions, the entropy contribution to the binding 

free energy is poorly modeled or ignored, despite its significant impact [74]. It is widely 

assumed that the entropic contribution of bond stretches and angle bends are negligible. 

The assumption is often done for rotational and translational entropy, although they are 

known to vary not only from one complex to another, but also among alternative bound 

conformations of a single complex [78]. A recent study considering these two terms was 

reported to be successful [52].

The  loss  of  flexibility  of  the  ligand  upon  binding,  resulting  from  a  reduction  of  the 

energetically  accessible  rotamers.  has  an  average  impact  on  the  binding  free  energy 

ranging between 4 and 5 kcal/mol  [72].  The overall  uncertainty was reported to be of 

around 5-10 kcal/mol,  spanning several  logs  of  affinity  [74].  An ideal  scoring function 

should account for this reduction of the accessible conformational space, but this penalty 

is usually calculated as a function of the number of frozen dihedral angles [74]. This crude 

approximation  makes  the  consistent  and  successful  ranking  of  diverse  compounds 

inconceivable when using docking score to estimate the binding free energy [74].

5.4.1.3 Role of water molecules

Another challenge is the modeling of the role of water molecules in solvation, desolvation 

and ligand binding. Despite some approaches have shown to be successful [70] [79], this 

field seems to be still waiting for more accurate calculations [74] [80] [81].

5.4.1.4 Flexibility of the protein

A convenient  way to represent  protein  flexibility  implicitly  is  to use softened van der 

Waals potentials. An explicit flexibility can be incorporated by methods combining several 

conformations of the structure of the receptor into a single map of interaction energy [82], 
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or into a pharmacophore that weights more the consensus regions of a protein than the 

flexible regions of the active site [83], or into a specific knowledge-based pair potentials 

[84]. The docking can also be directly combined with MD simulations where parts of the 

protein are free to move [85].

The flexibility of the protein is clearly a challenge for the years to come [65], both for the 

sampling  heuristic  and the  scoring  function,  as  the  search space can be dramatically 

increased and a lot of noise can be generated by remote atomic movements not related to 

the binding mode evaluated.

5.4.1.5 Reproducibility issue

Ultimately,  the  research toward more effective  and selective  scoring functions  [19] is 

difficult as the re-implementations of published scoring functions often perform differently 

from  the  original  [86].  As  stated  in  [64],  this  suggests  that  “while  authors  may  be 

meticulous in documenting the exact variants of the scoring functions they use, we fear 

that the subtleties are often lost when their original work is cited”.

5.4.2 Sampling heuristics

While the need for more accurate scoring functions is highlighted by most benchmarks, 

their improvement is likely to require the generation of more relevant and refined binding 

modes  [63]. Sampling is thus still  part of the problem, as a perfect sampling heuristic 

would be impaired by a bad scoring function,  so would be a  perfect scoring function 

combined  with  a  bad  sampling  heuristic.  To  improve  docking  accuracy,  the  balance 

historically found between the performance of the sampling heuristics and the accuracy of 

the scoring functions will thus have to be reconsidered [63].

Nonetheless, docking softwares are already used to design new drugs.

5.5 Two applications of docking in drug design

As stated above, docking softwares are valuable tools in pharmacy and medicine, as most 
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drugs are small molecules (ligands) designed to interact with biologically relevant target 

proteins (receptors) in order to act on the biological pathway they are involved in. The 

identification  of  an efficient  ligand (lead compound)  is  part  of  a  process  taking place 

between  the  need  for  a  biological  activity  and  drugs  delivered  to  the  patients.  This 

process is briefly presented below to highlight the role of docking softwares, and two of 

their most common applications are then presented.

5.5.1 Two impacts of docking softwares

The number of experimentally resolved protein structures is growing exponentially thanks 

to huge efforts and improvements in crystallographic techniques. Several of these protein 

structures are potential targets for the pharmaceutical industry, and the importance of 

structure-based  drug  design  has  thus  increased  during  the  past  few  years.  Several 

computational approaches based on these structures aim at rationalizing experiments by 

focusing on compounds more likely to have the desired activity, bioavailability and toxicity. 

Such an early filtering is very helpful regarding to the 5000 compounds required to obtain 

a  single  drug  (see  Table  1).  Marketed  drugs  are  usually  close  to  the  first  active 

compounds identified (called hits) [87]. Their characteristics are thus very important, and 

several hits belonging to different chemical families should ideally be identified [5] [62]. 

Therefore, hit discovery relies heavily on the sampling of the chemical space, for which 

computational  methods are very efficient,  especially when considering VS or RDD  [5]. 

These  in silico methods are now widely used  [5] and generate substantial profits  [66]. 

Docking tools have a central role among these methods. Their most common application, 

VS, intends to rank several thousands of small molecules (usually taken from a database) 

according to a few properties related to the binding to a pharmaceutically relevant target. 

Complementary  to  VS,  RDD,  such  as  fragment-based  approaches,  suggests  structure-

based modifications of a lead compound, or even lead compound themselves. These two 

typical applications are described hereafter, as well as a deeper insight into fragment-

based rational drug design (FB-RDD).
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5.5.2 Virtual screening

5.5.2.1 Overview

Drugs are usually small organic molecules with less than 30 heavy atoms. The size of the 

corresponding  chemical  space  is  estimated  to  1060 [88].  Drug-like  molecules  can  be 

characterized  by  the  “rule  of  five” [89]:  they  should  have  less  than  5  hydrogen-bond 

donors and 10 acceptors, a molecular weight lower than 500 g/mol, and a ClogP lower 

than 5, but a representative subset of such compounds is still by far out of reach of high-

throughput methods.  However, once compounds obeying this rule of five are carefully 

chosen, taking into account their drug-likeliness [9] and diversity, docking softwares can 

be used to identify the ones most likely to be active [65] (see Figure 4). This filtering aims 

at  focusing  the  numerous  affinity  assays  that  need  to  be  performed  on  compounds 

favorably ranked. Compared to traditional experimental high-throughput screening (HTS), 

VS  is  faster,  cheaper,  and  provides  a  better  sampling  of  the  chemical  space  [81]. 

Nevertheless,  VS should  be used in  combination  with traditional  HTS,  as  a  biological 

assay is always needed to validate computational methods (see Figure 4).
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5.5.2.2 State of the art

A recent benchmark of 10 docking programs and 37 scoring functions on 8 biological 

targets  concluded  that  VS  is  able  to  identify  active  molecules  representing  several 

potential  leads  [62].  As  expected,  similar  yet  experimentally  inactive  molecules  are 

identified  as  such,  and  for  all  but  one  targets,  at  least  one  combination  of  docking 

program/scoring function lead to a significant enrichment.

While promising, the results should not hide the inconsistent performance of VS [62] [77]. 

Another  benchmark  of  10  scoring  functions  and  4  docking  engines  showed  that  the 

discriminatory power of today’s scoring functions requires better poses, more accurate 

bioactive conformations, and also more accurate binding poses [63]. As mentioned above, 

this underlines that the sampling problem is not resolved yet.

A recent study [90] compared the enrichments resulting from the VS of five targets with a 

known  structure,  either  using  the  five  structures  available,  or  five  homology  models 

derived from templates,  or  even the template structure themselves.  Unexpectedly,  the 

enrichments resulting from the VS of homology models was not correlated with the quality 

of the template structure, and were equal or even greater than the enrichment obtained 

from the VS of the five crystal structures [90]. Even more surprising, the screening of the 

structures used as templates also led to a similar enrichment. Because of the molecular 
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Figure 4: Overview of virtual screening . See text for details.
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structure differences between the targets and the templates protein, such a result was not 

expected,  and  is  not  significantly  rationalized  when  some degree  of  flexibility  of  the 

protein is allowed. This supports the idea that there is at best a poor correlation between 

the accuracy of a binding mode and the enrichment, as mentioned by [62] [65] [91]. This 

statement might come as a surprise regarding to the hype around VS during the last 

decade.  However  it  is  consistent  with  the  fact  that  the  docking problem itself  is  not 

resolved yet, and that there are big issues that have to be addressed in the prediction and 

recognition  of  a  correct  binding  mode,  as  well  as  in  the  reasonable  evaluation  of  its 

binding free energy. Recently, some even suggested that the enrichment provided by VS 

might be more due to filtering out bad solutions than selecting the good ones [65] [74]. 

From a scientific point of view, this approach is only marginally satisfying although it has 

been shown to be somewhat effective [62].

5.5.3 Fragment-based rational drug design

5.5.3.1 Overview

The inconsistent  performance  of  VS is  likely  to  be due  to  the  level  of  approximation 

required to reach a docking speed compatible with a screening of large databases of drug-

like compounds. Interestingly, most known drugs are made of a relatively rigid regions 

combined  with  more  flexible  linkers  (Figure  5),  defining  the  so-called  molecular 

fragments.

One way to limit the size of these databases is to search only for smaller molecules, or 

even fragments of molecules, and then optimize, grow or link these fragments to produce 

a lead, and (in the best cases) a drug (Figure 6, Figure 8).

Designing drugs from pieces can reduce the dimensionality of the search and dramatically 

improve the chances of finding good starting points for the drug discovery process against 

novel drug targets  [94]. It also corresponds to a general trend to screen with low MW 

compounds, also called fragments, which are then optimized [95]. The goal is to identify 

millimolar to micromolar hits [96] [97] that can be subjected to an optimization.
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An interesting consequence of fragment-based rational drug design (FB-RDD) is that it is 

likely  to  lead  to  drugs  with  a  better  binding  energy  per  atom,  also  called  “ligand 

efficiency” [95] [96] [98], which is believed to improve the yield of drug discovery (Figure

7, Figure 8).

5.5.3.1.1 Definition of fragments

Several methods are available to identify interesting fragments [93] [99] [100] [101] [102] 

[103] [104]. The general trend observed is that Lipinski's “rule of five” for drugs can be 

rephrased as a “rule of three” for fragments [97]. Fragments typically have a molecular 

weight lower than 300 Da, a maximum of three hydrogen bond donors and acceptors, and 

a maximum ClogP of 3.

EADock: design of a new molecular docking algorithm and some of its applications. 46/183

Figure  6: The basic concept of fragment-based lead-discovery. The blue ovoid and red  

rectangle represent fragments that bind to the target protein.  These can be linked or  

expanded to produce high-affinity ligands. [95]

Figure 5: Decomposition of a low micromolar β-Secretase inhibitor into fragments, which 

are shown in different colors [92] [93].
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Figure  7: Ligand efficiency and chemical tractability of a hit. (a) The concept of ligand 

efficiency  (LE) can be used to  assess the quality  of  initial  screening hits  and also  to  

monitor the quality of the leads as they are optimized. The darker blue area is the region  

where compounds would be at least 10nM in potency and also obey Lipinski's molecular  

weight guide. Low-affinity and/or low-molecular weight fragments are shown in the green 

circle. The red oval depicts the broad cross section of assay-detectable hits from HTS, and  

includes low molecular  weight  lead-like compounds that would be seen as chemically  

tractable as well  as many more less-attractive compounds with poor ligand efficiency.  

Potency optimization of fragments or HTS hits will tend to be linked to an increase in  

complexity and molecular weight.An efficient optimization will be one in which potency is  

increased without a reduction in ligand efficiency, as illustrated by the green and red 

arrows. Due to the low complexity and molecular weight of fragments,they are more likely  

to lead to a rule-of-five compliant lead compound ([96]).
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Figure 8: Schematic representation of 'drug-like” HTS hits and fragments as start points 

for drug discovery.  (a) Cartoon representation of the active site of a protein, in which  

there  are  three  pockets  that  are  likely  to  be  “hot  spots”  for  inhibitors  to  bind.  (b) 

Representation of a typical drug-sized HTS hit binding to the active site. The HTS hit is  

functionally complex and makes numerous but low-quality  interactions around the key 

pockets. The affinity is the summation of interactions spread across the whole molecule.  

(c) representation of  a potency-optimized compound derived from the HTS hit  in  (b),  

which now better fills the binding site, but at the expense of increased molecular weight  

and  significant  complexity.  Such  optimized  ligands  are  likely  to  have  poor  drug-like 

properties (e.g. size, synthetic complexity, low solubility, multiple functional groups that  

might be metabolized). (d) representation of a “ligand efficient” fragment making a small  

number of high-efficiency interactions to one of the “hot spots” within the active site. Due 

to their small size, such fragments would usually not have good activity in a biological  

assay (typically in the millimolar or high micromolar range). (e) representation of a ligand 

efficient hit compound making good quality interactions in the active site based around a  

small “template”. Such a compound might be expected to be active in a biological assay. 

This lead-like compound might be rapidly identified from the fragment hit in (d) using 

structural information of how the fragment binds to the receptor. (f) representation of an 

advanced lead, derived from the hit in (e), making further high-efficiency interactions in 

the active site, while retaining the key interactions from the original fragment in the “hot  

spot” of the binding site. This lead has been “evolved” into neighboring binding pockets to 

produce a compact, ligand efficient and potent lead. ([96])



5.5.3.2 State of the art

5.5.3.2.1 Wet-lab methods

5.5.3.2.1.1 Fragments positioning

5.5.3.2.1.1.1 Functional assays

Inhibiting fragments can be identified using functional assays [88]. No structure is needed 

and the resulting optimized fragments are likely to lead to a functional inhibitor, not only 

to a good binder. However, no structural information can be collected, and the linking of 

fragments is thus difficult and requires that the binding modes of two fragments are in the 

neighborhood  of  each  other.  Notable  successes  were  reported  [88] [95] [105].  For 

instance, Maly and co-workers  [106] screened a set of small fragments in a functional 

assay to identify inhibitors of the kinase c-Src, an important oncology target. Fragments 

with  significant  activities  were  then  joined  using  different  linkers.  The  constructed 

molecules were then re screened to identify the most potent inhibitors. Several nanomolar 

inhibitors  of  c-Src  were  identified  and  displayed  a  greater  specificity  against  related 

enzymes.

5.5.3.2.1.1.2 NMR and X-ray screening

NMR and X-ray screening allows the identification of fragments binding to a biological 

target [107]. Their binding mode can then be identified, and the optimization of fragments 

is thus made easier. Several successful examples can be found in [88] [95] [105]. The two 

main concerns of NMR screening are the need for a high field NMR spectrometer and a 

big amount of radio labeled 15N protein to carry out experiments.

5.5.3.2.1.1.3 MS-based approaches

Mass spectrometry can also be used to identify interesting fragments [88]. Two variants 

exists depending on whether the fragment is covalently linked to the target  [94] or not 

[108] [109] [110]. The binding modes are resolved by X-ray crystallography.
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5.5.3.2.1.2 Toward lead compounds

Several methods are proposed in the literature to identify a lead compound starting from 

one or more interesting fragments. Combinations of these methods are usually used [88].

When a single fragment has been identified, it can be optimized by various substitutions 

or expansions in order to improve affinity and other properties  [88]. When two or more 

fragments are available,  they can be merged or linked. This approach can be used to 

reconstruct  known  leads  [88] once  they  have  been  split  in  fragments.  A  third  way 

encompassing  areas  such  as  dynamic  combinatorial  chemistry  uses  the  target  as  a 

template for the synthesis of inhibitors from fragments  [88]: the target protein is used 

both to select and to combine pairs of fragments in situ. It assembles its own inhibitor by 

selecting fragments that can cross-link to each other when brought into mutual proximity.

5.5.3.2.1.3 Noteworthy successes

Several successes are presented in a recent review [95] containing references for active 

compounds that have been found for several targets, such as JNK1 (IC50 = 0.024 μM), 

PDE4D (IC50 = 0.019 μM), capthepsin S (IC50 = 0.009 μM), DNA gyrase B (IC50 = 25 μM), 

lactate dehydrogenase (IC50 = 0.042 μM), anthrax lethal factor (IC50 = 0.032 μM), HCV-

IRES IIA (IC50 = 0.72 μM), IMPDH (IC50 = 0.076 μM), PDE4 (IC50 = 0.0009 μM), hNK2 

receptor (IC50 = 0.016 μM), DPP-IV (IC50 = 0.023 μM), DHNA (IC50 = 1.5 μM), CDK2 (IC50 

=  350 μM),  thrombin  (IC50 =  400 μM),  or  PTP1B  (IC50 =  86 μM).  Other  noteworthy 

successes can be found in [88] [105] [111].

5.5.3.2.2 In silico methods

The  in silico docking of fragments share the same advantages than VS over traditional 

experimental HTS. It is faster, cheaper, easier to set up, but requires an experimental 

validation during or at the end of the optimization process. While better suited for small 

or rigid fragments  [88], FB-RDD provides a better sampling [5]. As it is able to find the 

most probable binding mode of a fragment within a given region of interest, it can also 

probably  identify  binders  that are too weak to  be detected by the methods described 

above,  even  though  they  would  be  interesting.  Another  advantage  is  that  several 
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overlapping binding modes can be identified whereas they would lead to ambiguity in X-

ray crystallography.

5.5.3.2.2.1 State of the art

5.5.3.2.2.1.1 Skeleton and atom types

This approach is a two steps procedure: first, initial genetic skeleton of carbon atoms is 

generated [112] [113] [114] [115] [116] [117] [118] [119]. Atom types are then chosen to 

optimize  the  electrostatic  or  hydrophobic  complementarity  of  the  protein  [120] [121] 

[122] [123] [124] [125] [126]. Depending on how fragments are chosen, the synthesis of 

interesting compound might not be feasible.

5.5.3.2.2.1.2 Fragment docking

Several programs were designed to dock fragments in favorable conformations, such as 

Ludi [127], GRID [128], X-CITE [129], SEED [130] or MCSS [131].

5.5.3.2.2.1.3 Fragment linking

Several approaches can be found in the literature such as HOOK [132], DLD [133], and 

others [134]. The latter links small functional groups that have been either experimentally 

determined or determined with Multiple Copy Simultaneous Search (MCSS,  [131]).  Its 

scoring function has been designed to select fragments interacting favorably with the 

receptor  and recognize  molecules  with  satisfactory  bond lengths,  angles  and dihedral 

angles. The refinement of these molecules is performed using a Monte-Carlo sampling and 

a simulated annealing protocol.

An interesting approach has been implemented by the Caflisch group, where fragments 

(identified with DAIM [93]) are docked with the program SEED [130], and used as anchor 

points by FFLD [16] to propose docking modes for one or several compounds.

5.5.3.2.2.2 Applications

An  approach  combining  DAIM,  FFLD  and  SEED  was  found  to  be  very  successful  at 
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identifying micromolar inhibitors for the β-Secretase [92], an interesting target regarding 

to the Alzheimer disease.

Another  noteworthy  success  was  reported  in  [135],  where  an  in  silico screening  for 

potential low molecular weight inhibitors of the DNA gyrase is combined with a biased 

high-throughput screening, and a 3D guided optimization process. A new inhibitor was 

found, ten times more potent than the reference inhibitor novobiocin.

5.5.3.3 Conclusion

Most studies around FB-RDD were published during the last five years, and were carried 

out in the industry [66] [88] by companies such as Vertex, Sareum, Astex Technology or 

Sunesis Pharmaceutical. The docking, linking and optimization of fragments  in silico is 

very likely to grow in the coming years, with docking programs able to predict accurately 

the  positions  and  orientation  of  fragments,  as  both  are  required  for  the 

linking/optimization to be successful. The docking problem is not solved yet [65], but the 

relatively low chemical complexity compared to VS leaves more space for slower and more 

accurate scoring functions, and more efficient sampling heuristics.

5.6 General conclusion

As stated in [46]: “Despite the very promising picture drawn, molecular docking still holds 

several hidden weaknesses, and the so-called docking problem is far from being solved. 

The lack of a suitable scoring function,  able to efficiently  combine both accuracy and 

speed, is perhaps the most detrimental weakness. The results of a docking experiment 

should therefore not be taken as the final result of a structural study, but rather as a good 

starting point for a deeper and more accurate analysis. In this sense, docking must be 

necessarily fast, enabling large quantities of data to be considered, and reasonable and 

coherent  solutions  to  be  generated.  However,  the  final  result  (geometry,  binding  free 

energy)  should  always  be  determined  by  a  more  accurate  and  precise  methodology, 

naturally slower”.
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The main goal pursued during this PhD thesis was to end up with a docking algorithm that 

is able to deal with real world applications, precise enough for RDD, and versatile enough 

to be used as a toolbox to investigate new answers and development that may lead to 

important breakthrough [65]. This docking algorithm is called EADock.
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6 Presentation and benchmark of EADock

Most published docking algorithms were designed for  VS. The resulting time constraint 

implies that either a very fast (and thus less accurate) scoring scheme is used, or that the 

sampling is limited around the supposed binding pocket, or both. The docking algorithm 

for RDD proposed in this work, Evolutionary Algorithm for Docking (EADock) provides a 

unique combination of  four  methods,  which  have been presented  separately  [18] [24] 

[136] [137] [138].

First, the thorough sampling heuristic of EADock is inspired by evolutionary algorithms, 

and uses a combination of two fitness functions.  The first  one,  which neglects solvent 

effects,  is  used to drive the search toward local  minima because of  its  efficiency and 

speed.  These  minima  are  then  exposed  to  a  more  selective  and  computationally 

demanding fitness function, which includes the solvation free energy. This approach thus 

relies on the assumption that minima of the second fitness are also minima of the first, 

though their rank may be different [139].

Secondly, a mechanism inspired by tabu search restricts the search space as the evolution 

proceeds, by storing a list of previously visited unfavorable docking poses and preventing 

the  search  from  revisiting  these  poses,  thus  facilitating  the  exploration  of  new 

conformational space. This continuous update of the search space also ensures that the 

evolution does not converge to complexes that do not correspond to a minimum of the 

second and more selective fitness.

Third, the sampling is performed with operators that combine a broad and a local search 

of the conformational space. Some of these operators are semi-stochastic, dealing with 

rotations  and  translations.  Other  operators,  called  “smart  operators”  aim  at  crossing 

energy  barriers  by  transiently  modifying  the  fitness  landscape,  in  a  physical  and 

deterministic manner.

Fourth,  aside from this flexible sampling framework,  coordinates handling and energy 

calculations are delegated to the CHARMM package, for which a Java API was developed. 
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EADock is thus able to use the latest improvements available in CHARMM, especially 

sophisticated solvation models such as GB-MV2 [44] [45].

The predictive ability of EADock was benchmarked on a previously used set of 37 protein 

complexes  [57]. A successful prediction was defined by a RMSD between the predicted 

binding mode and the crystal structure, calculated for heavy atoms of the ligand (referred 

to as RMSD), lower than 2 Å. Despite challenging starting conformations, a huge search 

space and a very short evolution, such complexes were identified and proposed for 92 % 

of the test complexes, and ranked first for 68 % of them. Some failures may be explained 

by the existence of a bond between the ligand and its receptor that is out of the scope of 

our scoring functions. For all remaining failures except for one, a significant interaction 

was found between the ligand and a neighboring complex of the crystal unit cell.

6.1 Docking algorithm

An overview of the algorithm is outlined in Figure 9.

EADock  is  initialized  with  parameters  relative  to  the  docking  (such  as  reference 

coordinates for the targeted protein and the ligand, and a list of free dihedral angles) and 

for  the  evolutionary  process  itself  (such  as  the  population  size  and  the  number  of 

generations). Of course, the crystal structure, if any, is never used in any way to introduce 

a bias or a driving force in the algorithm. A region of interest (ROI) is defined as a sphere. 

Depending on its position and its radius, this sphere can be focused around the binding 

site, or encompass the whole protein surface.
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From  a  technical  point  of  view,  EADock  is  a  Java  program.  It  relies  on  a  generic 

evolutionary engine called Jeep and on a docking-specific code which is interfaced with a 

molecular mechanics engine. For this study, we chose the CHARMM package (Figure 10).
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Figure  9:  Main  steps  of  the  docking  algorithm  implemented  in  EADock.  Typical  

parameters are a population size of 250 complexes, 400 generations, a clustering cutoff of  

2 Å, and a maximum cluster size of 8 elements.
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6.1.1 Seeding

The  first  population  to  be  evolved,  generation  zero,  is  filled  with  decoys  from  the 

reference coordinates of the ligand. These decoys are referred to as seeds. Each seed is 

generated by random translation and rotation starting from the reference coordinates, 

followed  by  a  sequential  optimization  of  every  user-defined  dihedral  angle.  Resulting 

complexes are optimized by a routine called SmartAttractor. This procedure translates the 

ligand to a minimum of the interaction energy, close to the protein surface, along an axis 

defined by the two closest atoms. This minimum is identified by iteratively translating the 

ligand toward the protein with a step of 0.1 Å and minimizing its energy.

Starting from the conformations obtained from the translations/rotations, each dihedral 

angle specified by the user is optimized sequentially by the OptRot operator (see below). 

After this optimization, the ligand is further minimized using 50 steps of steepest descent 

(SD) followed by 100 steps of Adopted Basis Newton-Raphson (ABNR). Such a search 

guarantees  that  energetically  unfavorable  rotamers  are  not  retained  in  the  first 

generation,  and that the free dihedral angles,  bond lengths and valence angles of the 

ligand are optimized for each initial binding mode.

6.1.2 Selection

Once  a  population  has  been  created,  two  fitness  functions  are  successively  applied, 

providing the only two driving forces in EADock. First, complexes are ranked according to 

a fast and simple scoring function, the SimpleFitness. Secondly, clusters of complexes are 

formed and confronted to an accurate and slower scoring function, the  FullFitness, and 

the ranks of their centers are updated.

The  SimpleFitness is  equal  to  the  total  energy  of  the  system  calculated  with  the 

CHARMM22 molecular mechanics force field, with a dielectric constant of 1 and no cutoff:

SimpleFitness=E intra
ligandE intra

recept.E inter

E intra
ligand and E intra

recept. are the internal energy of the ligand and the receptor, respectively. 
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They are equal to the sum of the internal bonded (bonds, angles, etc.) and non-bonded 

(electrostatic  and  van  der  Waals  interactions)  terms.  When  the  receptor  is  fixed,  its 

internal energy, E intra
recept. , is constant. E inter  is the interaction energy between the ligand 

and  the  receptor,  and  is  equal  to  the  sum  of  the  van  der  Waals  and  electrostatic 

interaction energies. The SimpleFitness is fast, but neglects the effect of solvent known to 

have an important contribution to the binding free energy. It is nevertheless likely to focus 

on reasonable solutions [139].

The  FullFitness is subsequently used to evaluate clusters that are identified using the 

RMSD  matrix  between  all  complexes  in  the  population.  The  most  favorably  ranked 

complex  is  chosen  as  center  for  the  first  cluster.  Its  neighboring  complexes  in  the 

population, defined with a RMSD threshold, are assigned to this first cluster. The next 

most favorably ranked complex is chosen as a the center for the second cluster, and its 

neighbors  are  assigned  to  this  second  cluster.  This  procedure  continues  until  all 

complexes of the population have been assigned to a cluster. When at least three clusters 

have  reached  their  maximum  number  of  members  (typically  8),  their  FullFitness is 

computed.

The FullFitness of a cluster is calculated by averaging the 30 % most favorable effective 

energies of its elements, in order to limit the risk of a few complexes penalizing the whole 

cluster. This effective energy is written as the sum of the total energy of the system and a 

solvation term. Neglecting the solute entropic contribution, we can write:

Geff=E intra
ligandE intra

recept.E interG elec , solv×SASA

where E intra
ligand ,  E intra

recept. ,  and  E inter are  calculated  as  described  above.  The  solvation 

energy is composed of the electrostatic, Gelec ,solv , and the non-polar contributions. The 

latter can be considered as the sum of a cavity term and a solute-solvent van der Waals 

term, and is assumed to be proportional  to the solvent  accessible surface area, SASA 

[140] [141].  We use  a  value  of  0.0072 kcal/(mol Å2)  for  the  parameter  [142] [143] 

[144] and the SASA was calculated analytically in CHARMM.
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Gelec ,solv is  calculated  using  the  analytical  Generalized  Born  Molecular  Volume 

(GB-MV2) model implemented in CHARMM that is about 20 times faster than solving the 

Poisson  equation.  Recent  results  showed  that  the  deviation  between  the  desolvation 

energies calculated with the GB-MV2 model and with the Poisson-Boltzmann (PB) model is 

constant for a series of different conformations of a given complex, which means that the 

use of GB-MV2 does not alter the ranking of binding modes [145].

Each fitness function modifies the rank of complexes in the population, and this rank is 

used to  select  parents  for  the  next  generation;  the  centers  of  clusters  with  the  most 

favorable FullFitness are ranked on top of all other complexes in the current population. 

Conversely,  centers  corresponding  to  clusters  with  a  less  favorable  FullFitness are 

removed from the population and added to the tabu list.

Evolutionary algorithms require a balance between selection and generation of diversity, 

the latter being embodied in new complexes created from parent complexes. In EADock, 

parents are chosen to refine and fill identified clusters, so that these clusters can compete 

with respect to their FullFitness as frequently as possible, limiting the risk of discarding 

interesting complexes due to the poor selectivity of the SimpleFitness. Parent complexes 

are selected from the top ranked half of the population, according to their internal rank in 

the cluster to which they belong, then by the rank of this cluster among other clusters. 

Isolated binding modes are considered as mono-element clusters.  The best member of 

each cluster is selected first, then the second best member of each cluster, and so on. This 

selection continues with elements of the following ranks until enough parents have been 

collected. Members of small clusters can be selected several times.

In summary, EADock uses two fitness functions on two different levels:  complexes are 

ranked  according  to  the  SimpleFitness (fast,  efficient)  to  guarantee  reasonable 

electrostatic  and van der  Waals  interactions.  Clusters  of  complexes,  corresponding  to 

binding modes, are then evaluated by the FullFitness (slow, selective) taking into account 

the solvent effect, and the search space is adjusted consequently. Both fitness functions 

modify the rank of complexes in the population, as this rank is used to select parents for 

the next generation. After a user-defined number of generations, the evolution is stopped.
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6.1.3 Diversity

To generate a child, one or two parent complexes are selected according to their rank in 

the collection described above, and modified by an operator. Operators combine a broad 

search procedure (see below) followed by a local search through energy minimization. The 

latter  was  shown  to  speed  up  convergence  and  improve  prediction  quality  [20] by 

resolving  simple  steric  problems  that  might  be  introduced  by  the  former,  as  well  as 

adjusting valence angles and bond lengths. Once a child belonging to the search space 

has been generated and confronted to the tabu list, it is included in the population. If it 

belongs to a cluster that is already full, it replaces the member with the least favorable 

SimpleFitness. Otherwise, the worst ranked solution of the whole population is replaced. 

This prevents the premature convergence of the whole population to a single minimum.

Several operators are available to generate new complexes. Four operators optimize the 

position  and  orientation  of  the  ligand  relative  to  the  protein:  two  consist  of  random 

rotations around a random axis and two of random translations along a random axis. For 

each  kind  of  movement,  two sets  of  parameters  are  used,  either  focusing  on  a  local 

(rotations up to 40˚ and translations up to 2.5 Å) or on a long-range exploration (free 

rotations and translations up to 10 Å ). The latter are referred to as long-range operators, 

the former and all other operators being short-range operators. As long-range operators 

are  likely  to  deeply  modify  the  ligand  pose,  the  SmartAttractor procedure  described 

previously  is  applied to  the  newly  generated pose in  order  to  avoid  steric  clashes or 

complexes with little or no interaction between the ligand and its receptor.

The  OptRot operator  optimizes  the  free  dihedral  angles  of  the  ligand.  One  of  these 

dihedral angles is randomly chosen and optimized as follows; two groups of atoms are 

identified, one on each side of the bond defining the rotation axis. The first group of atoms 

is held fixed while the second is rotated by 60˚ steps. Scanned poses are minimized using 

50  steps  of  SD  followed  by  100  steps  of  ABNR,  and  assigned  a  score  with  the 

SimpleFitness. The conformation of the second group of atoms with the lowest score is 
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kept with a Metropolis-like criterion. The angle scan is then repeated swapping the two 

groups of atoms in order to rotate the first one, and the rotamer with the most favorable 

score is retained.

Three  operators,  ElectrostaticOptimizer,  VanDerWaalsOptimizer and  SoftLigand,  were 

designed to modify the ligand binding mode of the parent thanks to a minimization in a 

transiently altered force field. To some extend, this can be related to the limitation of the 

repulsive van der Waals term which has been described in [18] [19] that also smooths the 

energy landscape. They all follow the same principle: first, the relative contribution of a 

specific  energy  term  is  artificially  increased  or  decreased.  Secondly,  an  energy 

minimization  is  performed  in  this  altered  force  field.  Third,  initial  contributions  of 

energetic terms are restored, and fourth, an additional energy minimization is performed 

to relax the ligand in the original force field.

ElectrostaticOptimizer and VanDerWaalsOptimizer transiently increase by a factor of five 

the electrostatic or the van der Waals interaction energy, respectively. Both the sampling 

and  relaxation  minimizations  follow  the  same  scheme  consisting  of  50  steps  of  SD, 

followed by 100 steps of ABNR.  SoftLigand transiently decreases the self-energy of the 

ligand  by  a  factor  of  four.  This  alteration  of  the  force  field  allows  the  ligand  to  be 

transiently distorted in order to cross energy barriers and to improve its interaction with 

the  surface  of  the  protein  during  150  steps  of  ABNR  minimization.  The  relaxation 

minimization consists of 500 steps of ABNR.

The last operator,  Interpolator, uses two parent complexes if the RMSD between them 

ranges from 0.2 Å to 5 Å. A set of interpolated conformations are generated and optimized 

by  the  SmartAttractor procedure (see Seeding),  and the conformation with the lowest 

interaction energy is retained.

Once a parent has been randomly chosen, an operator is selected based on its probability 

to be applied, which is increased automatically according to its contribution to the fitness 

improvement over the last five generations.  This procedure,  called automatic operator 

scheduling, has been described previously [21]. In brief, each time a child is created, the 
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operator that was applied is credited with the SimpleFitness difference between this child 

and  its  parent.  Every  fifth  generations,  the  probabilities  of  operators  are  adjusted 

according to this credit. In addition, a bias is introduced depending on the size of the 

cluster to which the parent belongs. If this cluster has reached its maximum allowed size, 

long-range operators are more likely to be selected in order to escape from this identified 

minimum. Conversely, short-range operators are more likely to be applied if the cluster is 

almost empty, to refine it and increase its number of members, in order to evaluate it as 

soon as possible with the FullFitness.

6.1.4 Postprocessing

The reliability of each docking experiment is enhanced by combining several (typically 

five)  independent  evolutions.  Complexes  for  which  the  effective  energy  has  been 

calculated are merged into a single optimized population, which is then reclustered. These 

new clusters are ranked according to their  FullFitness, which is calculated as described 

previously.

A 2 Å RMSD threshold between the top-ranked cluster and the crystal structure defines 

an successful prediction. If no such conformation was ever sampled, a sampling failure is 

reported.  If  a successful  complex was generated but  lost  before its  evaluation by the 

FullFitness, a SimpleFitness failure is reported. If an acceptable cluster was evaluated by 

the  FullFitness,  but  lost  afterwards because of  its  poor  score,  a  FullFitness failure  is 

reported.

6.2 Dataset

To ensure unbiased benchmarks [64], complexes used for the validation of EADock were 

taken from a previous study [57]. They are presented in Table 3.
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Table 3: Our approach was tested on 37 complexes. This table shows complexes that have 

been used for the sampling heuristic assessment and for the benchmark of the algorithm. 

This distinction is based on the accessibility of the binding site. This table lists the PDB 

code for each complex, as well as the charge of the ligand (q), the number of internal  

degrees  of  freedom  of  the  ligand  (DoF),  the  number  of  hydrogen-bond  donors  and  

acceptors  (Hb. A.  and  Hb. D.),  the  mass  of  the  ligand  (Mass)  and  the  percentage  of  

surface of the ligand buried upon complexation (% B. Sur.)

Experiment Complex q DoF Hb A. Hb D. Mass % B. Sur.

28
 t

es
t 

ca
se

s:
 a

lg
or

ith
m

 a
ss

es
sm

en
t 

an
d 

be
nc

hm
ar

k

A
cc

es
si

bl
e

Carbonic anhydrase
1cil -1 3 6 2 323.4 85.1
1okl 0 2 4 1 249.3 87.7
1cnx 0 10 6 3 331.4 74.2

Neuraminidase
1nsc -1 4 9 6 308.3 92.0
1nsd -1 4 8 5 290.3 92.6
1nnb -1 4 8 5 290.3 89.7

Ribonuclease
1gsp 0 2 9 3 360.3 80.2
1rhl -2 3 10 4 361.2 78.1
1rls -2 3 10 4 361.2 79.2

Trypsin
3ptb 1 1 0 2 121.2 94.6
1tng 1 1 0 1 114.2 91.6
1tnj 1 2 0 1 122.2 92.4
1tnk 1 3 0 1 136.2 91.0
1tni 1 4 0 1 150.2 85.6
1tnl 1 1 0 1 134.2 92.7
1tpp 0 2 3 2 206.2 86.9
1pph 1 7 3 3 429.6 69.9
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Carboxypeptidase
1cbx -1 3 4 1 207.2 98.2
3cpa 0 4 4 3 238.2 97.7
6cpa -1 9 8 2 477.4 82.3

Penicillopepsin
1apt 1 17 6 5 501.7 85.9
1apu 0 15 6 4 485.7 85.0

Thermolysin
3tmn 0 5 3 3 303.4 73.0
5tln -1 7 5 3 320.3 79.8

6tmn -1 11 8 3 471.5 73.2
ε-Thrombin

1etr 0 7 6 4 504.6 87.9
1ets 1 7 4 4 522.7 88.3
1ett 1 5 3 3 429.6 88.2
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Cytochrome P-450cam
1phf 0 1 1 1 144.2 100.0
1phg 0 3 3 0 226.3 100.0
2cpp 0 0 1 0 152.2 100.0

Intestinal FABP
1icm -1 11 2 0 227.4 95.6
1icn 0 14 2 1 282.5 96.0
2ifb -1 13 2 0 255.4 96.9

L-Arabinose
1abe 0 0 5 4 150.1 100.0
1abf 0 0 5 4 164.2 100.0
5abp 0 1 6 5 180.2 100.0
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As can be seen, featured ligands are diverse in terms of charge, molecular weight, number 

of internal degrees of freedom, number of hydrogen-bond donors and acceptors, and logP.

The  binding  sites  can  be  classified  according  to  their  accessibility.  Binding  sites  are 

considered buried if the fraction of the ligand surface buried upon binding is greater than 

95% for  all  ligands.  This  is  the case for  cytochrome,  L-arabinose  and intestinal  FABP. 

Non-buried  binding  sites  can  be  either  easily  (trypsin,  neuraminidase,  ribonuclease, 

carbonic  anhydrase),  or  poorly  accessible  (-thrombin,  thermolysin,  penicillopepsin, 

carbocypeptidase), depending on the shape of the binding pocket.

Titrable groups were considered to be in their standard protonation state at neutral pH. 

The  protonation  state  of  histidine  residues  was  defined  based  on  inspection  of  their 

environment. The proteins and ions were modeled using the all-atom CHARMM22  [43] 

force field.  Missing hydrogens in the crystal  structure were added using the HBUILD 

[146] procedure of CHARMM. Missing parameters for the ligand, for use in conjunction 

with CHARMM22, were derived from the Merck Molecular  Force Field (MMFF)  [147] 

[148] [149] [150] [151] by taking the dihedral angle term as is, and the quadratic part of 

the bond and angle energy terms. The partial charges and van der Waals parameters of 

the  ligand  atoms  were  taken  from  the  MMFF.  The  ligands  were  modeled  with  all 

hydrogens.

Before starting the docking process,  the crystal  structures were minimized using 100 

steps of SD with the GB-MV2 solvation model. No cutoff was used. This short minimization 

was  used  to  remove  clashes  arising  from  the  crystal  structure  and  hydrogen  atoms 

placement without affecting the protein conformation. The RMSD between the starting 

and final conformations, calculated for all heavy atoms, was always lower than 0.15 Å. The 

ligand was removed before starting the docking process.

6.3 Algorithm assessment and benchmark

First, the scoring strategy and the sampling heuristic were assessed. Then, the predictive 

ability of EADock was benchmarked in conditions similar to a real application.
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For  each  test  case,  a  hundred  decoys  were  generated  using  the  seeding  procedure 

described  above.  The  SimpleFitness and  the effective  energy of  these  decoys  were 

calculated, and plotted against the RMSD to the crystal structure. The convergence of the 

evolutionary  process relies  on the correspondence between minima of  the two fitness 

functions. Such a correspondence implies that if a complex has been first minimized in the 

SimpleFitness force field, a subsequent minimization in the FullFitness force field has only 

a limited impact on its  coordinates. This  was confirmed for each test case,  using 250 

decoys  generated  with  the  seeding  procedure  described  above,  except  that  no 

minimizations were performed (conformations A). These conformations were minimized in 

the  SimpleFitness force  field  (50 steps  of  SD followed by 100 steps  of  ABNR) giving 

conformations B. The latter were further minimized in the  FullFitness force field (100 

steps of SD) giving conformations C. The RMSDs between corresponding poses in B and C 

were calculated (RMSDBC). In view of the hypothesis that the two fitness share the same 

minima, the distribution of RMSDBC is expected to be close to zero. To provide a reference, 

conformations A were also minimized directly in the FullFitness force field (100 steps of 

SD) giving conformations D. The RMSDs between corresponding poses in A and D were 

also calculated (RMSDAD). The RMSDBC and RMSDAD distributions were compared, in order 

to verify that RMSDBC is closer to zero than RMSDAD.

The quality  of  the sampling of  a docking algorithm can be measured by its  ability  to 

converge on the crystal structure when starting from remote seeds. Docking assays were 

thus  performed  with  increasingly  challenging  seedings  for  the  28  test  cases  with  an 

accessible or poorly accessible binding pocket. Test cases with buried binding pockets 

were excluded; since their binding pockets are  a priori unambiguously identified, they 

would have led to an overestimation of the efficiency of our sampling heuristic. A total of 

140 docking assays were performed: for each of the 28 test cases, five groups of seeds 

were  generated  as  described  above,  with  a  RMSD  to  the  crystal  structure  varying 

between 0-3 Å (easiest),  2-5 Å, 4-7 Å, 6-9 Å and 8-11 Å (most difficult). For all  docking 

runs, 25 out of the 250 docking poses in the population were renewed at each generation. 

Children were generated from parent conformations selected out of the top-ranked half of 

the population. All operators shared the same base probability (0.2), and their maximum 
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adaptive probability was set to 0.1. A clustering distance cutoff of 2 Å was used together 

with a maximum of 8 conformations per cluster.  Identified clusters were evaluated by 

averaging the three most favorable effective energies of their members.

Finally, EADock was benchmarked in real conditions on the same test set: a docking assay 

was realized for the 37 test cases, using the parameters described above, combined with a 

less restricted seeding. Seeds were generated between 3 Å and 10 Å RMSD to the crystal 

structure for test cases with accessible or poorly accessible binding pockets (seeds too 

close  to  the  crystal  structure  were  explicitly  excluded,  see  discussion).  The  ROI  was 

limited to a radial distance of 15 Å around the center of mass of the crystal structure. For 

buried test cases, seeds were generated between 3 Å and 5 Å RMSD while the ROI was 

limited to 5 Å to prevent sampling outside of the binding pocket.

6.4 Algorithm performance

First,  the  scoring  function and  sampling  heuristic  of  the  algorithm were  assessed by 

investigating  the  relationship  between  the  SimpleFitness or  the  FullFitness with  the 

RMSD to the crystal structure using a set of decoys, and by starting the evolution from 

unfavorably biased seeds.

Second, the predictive ability of the algorithm was benchmarked in realistic conditions, 

excluding seeds with a RMSD to the crystal structure lower than 3 Å RMSD, in order not 

to  introduce  a  favorable  bias  in  our  results  (see  Discussion).  Both  evaluations  were 

performed on the same data set of 37 ligands [57].

6.4.1 Algorithm assessment

Four representative examples of the relationships that we observed between the RMSD 

and  both  the  SimpleFitness and  FullFitness are  shown  in  Figure  11:  a  successful 

identification of an acceptable cluster by both fitness (A), a  SimpleFitness failure (B), a 

FullFitness failure (C), and a failure of both fitness (D). Compared to the SimpleFitness, 

the  FullFitness is generally noisier, and its driving force is present only near the global 
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minimum.
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Figure  11: Correlation between the RMSD and the  SimpleFitness (pink, left Y-axis) and 

the FullFitness (blue, right Y-axis). The four plots correspond to four representative test 

cases.  For  each  of  them,  a  set  of  1000  decoys  were  generated  using  the  seeding 

procedure (see Material and Method). A. both fitness are able to identify a cluster very  

close  to  the  crystal  structure.  B.  the  SimpleFitness fails  at  ranking  the  cluster 

corresponding to the crystal structure correctly, but point it out as a local minimum which 

is  ranked  correctly  by  the  FullFitness.  C,  a  correct  cluster  was  ranked  first  by  the 

SimpleFitness, but not by the FullFitness. In this case, a bond exists between the ligand 

and the receptor. D, both fitness fail at identifying an acceptable cluster.
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The correspondence between minima of both fitness functions was assessed by plotting 

histograms  for  RMSDBC and  RMSDAD (see  Material  and  Methods).  A  representative 

example, ribonuclease/1gsp, is shown in Figure 12.

As can be seen, the RMSDBC is lower and its distribution is much tighter. This supports the 

hypothesis that minima of the SimpleFitness are also minima of the FullFitness.  As their 

ranking may be different, the ROI is dynamically updated in order to prevent the sampling 

to be focused around minima of the SimpleFitness that are not relevant according to the 

FullFitness.

Each seeding was assessed according to the randomization of the ligand position and to 

its conformation prior to starting the docking procedure, since both have a significant 

impact on the results  [64]. To  estimate the conformational diversity among seeds, each 

one was fitted to the ligand crystal structure conformation (used as a reference), and the 
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Figure  12:  Histograms  of  RMSDBC and  RMSDAD (see  Material  and  Method)  for  a 

representative test case (ribonuclease/1gsp). As can be seen, the distribution of RMSDBC 

(black lines) is tighter than the distribution of RMSDAD (red bars), and corresponds to 

much lower RMSD. This supports the hypothesis that the minima of the SimpleFitness are 

also minima of the FullFitness.

  



corresponding  fitted RMSD (RMSDfit)  was  calculated.  It  is  important  to  note  that  the 

RMSD between seeds and the crystal structure reflect a combination of the randomization 

of the ligand position and conformation, while the RMSDfit between seeds and the crystal 

structures reflect the randomization of the ligand conformation alone. For the former, the 

distinction was made between test cases with an accessible or poorly accessible binding 

site, and test cases with a buried binding site (Figure 13A). For the latter, a representative 

example, trypsin/1pph, is shown in Figure 13B.
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Figure 13: A. Assessment of the distribution of seeding conformations around the crystal  

structure: histogram of the RMSD between all seeds and the crystal structure for the 28  

accessible  and the 9 buried test  cases.  B.  Fitted RMSD between 1250 seeds and the 

crystal structure for trypsin/1pph. The reference conformation (RMSD=0) corresponds to 

that found in the crystal structure, which is poorly represented.
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As can be seen, the native ligand conformation was poorly represented, showing the good 

randomization of seeds dihedral angles. This thorough randomization makes the docking 

assay more realistic and difficult [152].

In our approach, clusters are used to establish the connection between the SimpleFitness 

and the  FullFitness. An example of the structural variability within clusters is shown in 

Figure 14A. All members of the depicted clusters correspond to a well-defined binding 

mode.

During evolution, clusters are evaluated by the  FullFitness, by averaging over the 30% 

most favorable effective energies of their members. This implies that for each cluster, the 

distribution of the effective energies of these members is tight enough for their average to 

be  relevant.  The  standard  deviation  of  these  distributions,  eff,  was  measured  for  all 

clusters that reached their maximum size (Figure 14B). For 50 %, 80 % and 90 % of the 

clusters,  eff  is  below 1.29 kcal/mol,  3.93 kcal/mol  and 6.36 kcal/mol,  respectively.  This 

indicates that the distribution of the effective energies of elements belonging to a cluster 

are narrow, and that the FullFitness calculated for clusters are relevant.
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The  intrinsic  ability  of  “smart  operators”  to  generate  low  energy  conformations  was 

assessed. Due to the automatic operator scheduling policy implemented in EADock, this 

ability  is  reflected  by  the  probability  of  an  operator  to  be  applied.  As  described  in 

Methods, the algorithm can adjust the probability of operators from 0.2 to 0.3 depending 

on the fitness of the children they produced. These probabilities were averaged over the 

140 dockings performed. The adaptive probabilities of the smart operators are larger than 

those of the stochastic operators, illustrating their competitive advantage over standard 

operators (Figure 15).

In order to measure the impact of smart operators on convergence, two docking assays 
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Figure  14; A. variability of coordinates and energies within two top ranked clusters for 

ribonuclease/1gsp. All nolecular graphics images were produced using the UCSF Chimera  

package [153]. B. Distribution of the standard deviation of the effective energy inside the  

1.8 million  clusters encountered during 140 docking runs.  The vertical  lines  at  eff = 

1.29 kcal/mol, eff = 3.93 kcal/mol and eff = 6.36 kcal/mol corresponds to the percentiles 

50, 80 and 90, respectively (the 1 % highest standard deviations are not represented)

  

Cluster #0
-1908.6 +/- 1.2 kcal/mol

Cluster #40
-1883.2 +/- 0.5 kcal/mol
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were realized with seeds ranging from 8 Å and 11 Å RMSD to the crystal structure, one 

with classical operators, the other one with both classical and smart operators. The speed 

of  convergence increases with the use of  smart operators,  especially  during the early 

generations (Figure 16), because of their more realistic physical description of the system. 

This allows a thorough exploration of the search space that could never been achieved by 

stochastic operators.

In  order  to  assess  the  performance  of  the  sampling  heuristic,  the  cluster  from  the 

optimized  population  (combined  last  generations  of  the  five  independent  runs,  see 

Methods) with the lowest average RMSD to the crystal structure was retained, whatever 

its  rank  and  FullFitness.  The  success  rate  remained  high  regardless  of  the  seed 

distribution (Figure 17).
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Figure  15:  Relative  probabilities  of  operators  averaged  over  the  140  runs.  Smart  

operators (red) significantly outperform classical operators (blue).

OptRot

ElectrostaticOptimizer

SoftLigand

VanDerWaalsOptimizer

Interpolator

Translation (big range)

Rotation (short range)

Rotation (long range)

Translation (short range)

0.2 0.22 0.24 0.26

relative probability



At least one acceptable binding mode was found within the five top ranked clusters for 

89 % of the test cases, except when seeds are generated between 8-11 Å RMSD to the 

crystal  structure  (79 %).  If  all  clusters  present  in  the  last  generation  are  considered 

(between 30 and 60 depending on the test case), this increases up to 100 %, 96 %, 93 %, 

93 % and 86 % when seeds are within 0-3 Å, 2-5 Å, 4-7 Å, 6-9 Å and 8-11 Å RMSD to the 

crystal structure, respectively. Noteworthy, RMSD less than 1 Å are reported for 70 % of 

the cases, and up to 90 % when the RMSD between seeds and the crystal structure ranges 

from 0 to 3 Å (data not shown).

The  algorithm  was  able  to  generate  at  least  one  conformation  within  a  2 Å RMSD 

threshold to the ligand in the crystal structure for 97 % of the 140 docking assays. Only 

four sampling failures were reported for penicillopepsin/1apt and 1apu, thermolysin/6tmn 
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Figure 17: Impact of the RMSD between the crystal structure and seeds on the docking 

outcome, considering either the top ranked, the five top ranked or all  clusters in the  

optimized population (deep, medium and light blue bars, respectively).
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Figure 16: Success rate considering either the top-ranked cluster (full line) or the five top-

ranked clusters (dashed line), with and without smart operators (red and blue curves,  

respectively), as a function of the number of generations. During the early generations,  

the success rate is higher with smart operators.
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and  -thrombin/1etr,  when starting  from the  most  remote  seeds.  These  four  sampling 

failures  reflect  a  difficulty  for  the  sampling  heuristic  to  generate  a  reasonable 

conformation  inside  a  poorly  accessible  binding  pocket  (Figure  18).  The  remaining 

failures can be attributed to our scoring function, although for most of them, a significant 

interaction was found between the ligand and a neighboring complex in the crystal (see 

below).
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Figure  18:  A.  view of  the single  sampling failure  reported,  corresponding to a  poorly 

accessible binding site (penicillopepsin/1apt), B. example of a typical contact between the  

ligand and a neighboring complex in the crystal (thermolysin/5tln, 5.2 Å), misleading our 

scoring functions, C. example of the limits of the FullFitness: bond between the ligand and 

the heme of the receptor (cytochrome/1phf), misleading the FullFitness. D. example of the 

limits  of the  SimpleFitness,  with protein/ligand interactions mediated by crystal  water 

molecules (thermolysin/3tmn).
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6.4.2 Benchmarks

Aside  from the  algorithm assessment  presented  above,  the  predictive  performance  of 

EADock was benchmarked for the 37 test cases using a realistic seeding (see Material and 

Methods)  ranging from 3 Å to 10 Å RMSD to the crystal  structure.  Again,  the crystal 

conformation was excluded from the seeds. All predictions are shown in Table 4.

A cluster with an average RMSD to the crystal structure lower than 2 Å was ranked first 

for 68 % of the test cases. When considering the five top-ranked solutions or all solutions 

surviving  through  the  evolution,  the  success  rate  increased  up  to  78 %,  and  92 %, 

respectively. In order to compare the accuracy of the predicted poses to other programs 

benchmarked in  [57], we focused on the 11 test cases corresponding to native docking 

experiments in both studies. Despite the exclusion of the crystal structure from the seeds, 

the average RMSD between the best clusters predicted by EADock and crystal structures 

is 0.75 Å. This is significantly better than what was reported for ICM (1.04 Å), AutoDock 

(2.46 Å), GOLD (3.31 Å), FlexX (3.85 Å) and DOCK (3.87 Å).
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Table 4: Summary of predictions for each test case, presenting the distance between the  

seeds and the crystal structure, the fraction of the receptor surface included in the ROI,  

the rank of the first acceptable cluster and the average RMSD between its members and  

the  crystal  structure.  If  the  best  ranked  acceptable  cluster  is  not  ranked  first,  the  

FullFitness difference with the top ranked cluster is shown. If the first acceptable cluster  

is not ranked first, a possible explanation is given.
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Carbonic anhydrase
1cil 10.0% 49 1.08 26.78
1okl 9.7% 58 1.57 34.53
1cnx 12.3% 46 1.65 55.28

Neuraminidase
1nsc 8.1% 1 0.52 - -
1nsd 8.1% 1 0.69 - -
1nnb 8.8% 1 0.74 - -

Ribonuclease
1gsp 31.1% 1 0.85 - -
1rhl 32.0% 1 1.12 - -
1rls 32.4% 1 0.98 - -

Trypsin
3ptb 15.9% 1 0.49 - -
1tng 16.1% 1 0.21 - -
1tnj 17.5% 1 0.86 - -
1tnk 17.2% 1 1.19 - -
1tni 17.1% 2 1.98 2.96 Crystal contact
1tnl 17.0% 1 0.99 - -
1tpp 15.0% 1 0.35 - -
1pph 15.4% 1 0.49 - -
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Carboxypeptidase
1cbx 9.7% 1 0.58 - -
3cpa 9.6% 1 0.85 - -
6cpa 10.8% 2 0.98 0.88 Crystal contact

Penicillopepsin
1apt 13.3% Sampling failure -
1apu 12.9% 6 0.68 12.03 -

Thermolysin
3tmn 11.5% 1 0.57 - -
5tln 11.1% 7 1.86 28.98 Crystal contact

6tmn 10.1%  Fitness failure

ε-Thrombin
1etr 12.6%  Fitness failure Crystal contact
1ets 12.0% 1 1.16 - -
1ett 12.4% 1 0.79 - -
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Cytochrome P-450cam
1phf 0.3% 2 1.83 1.62
1phg 0.2% 3 1.65 0.97
2cpp 0.2% 1 0.19 - -

Intestinal FABP
1icm 1.4% 1 0.66 - -
1icn 1.0% 1 1.87 - -
2ifb 0.8% 1 0.76 - -

L-Arabinose
1abe 0.3% 1 0.18 - -
1abf 0.3% 1 0.68 - -
5abp 0.3% 1 0.64 - -
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Failures  are  illustrated  in  Figure  18.  A  single  sampling  failure  was  observed  for 

penicillopepsin/1apt  that  has  a  poorly  accessible  binding  site  (Figure  18A).  However, 

when the complex corresponding to the crystal structure is generated, it is successfully 

identified by the two fitness functions (data not shown).

For trypsin/1tni, the cluster with the most favorable energy is rejected as the RMSD to the 

crystal structure is 2.1 Å, hardly above the 2 Å threshold defining a successful prediction. 

This is due to the different conformations of the phenyl ring. Interestingly, the B-factors 

reported  for  the  corresponding  atoms  in  the  original  PDB  file  are  high  (47.1 Å2 on 

average, to be compared with an average of 17.6 Å2 over all other atoms), suggesting that 

this part of the ligand is more flexible. In addition, a contact was observed between this 

phenyl ring and a neighboring complex of the crystal unit cell.

Similar crystal contacts were identified for  -thrombin/1etr,  carbocypeptidase/6cpa and 

thermolysin/5tln. For the latter, a ionic interaction was found between the ligand and a 

neighboring complex in the unit cell (Figure 18B).

The  ligands  of  cytochrome/1phf  and  cytochrome/1phg,  are  linked  to  the  heme of  the 

receptor,  while  our  molecular  mechanics  force  field-based  scoring  function  does  not 

account  for  bonds  between interacting  partners  (Figure  18C).  These  bonds  were  not 

reported by Bursulaya et al [57], although discussed in the original article [154].

Other  benchmarked  programs  reported  in  [57],  except  ICM,  systematically  failed  at 

identifying  the  correct  binding  modes  for  all  test  cases  belonging  to  the  carbonic 

anhydrase family. This could be due to a limitation of the force fields in describing the 

interaction between the ligand and the zinc ion in the binding pocket  [39]. It is worth 

mentioning  that  the  ROI  used  with  ICM was  not  described,  and  it  is  not  possible  to 

exclude that it encompasses only a restricted number of putative binding modes.

Our validation test set was too small to significantly quantify the improvement provided 

by  using  GB-MV2  (FullFitness) over  ɛ=1  (SimpleFitness).  However,  using  this 

sophisticated implicit solvation model led to successes for 3tmn, 1ets, 1etr and 3cpa. For 

example, three water molecules mediate interactions between the ligand and the protein 
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in the 3tmn complex (Figure 18). According to the SimpleFitness (i.e.  in vacuo), at least 

two of  these  water  molecules  are  needed  in  order  to  rank  the  crystal  structure  first 

(Figure 16B). Without these structural water molecules, the crystal structure corresponds 

only  to  a  local  minimum of  the  SimpleFitness.  However,  this  local  minimum  is  deep 

enough to be represented by a cluster, which is ranked first according to the FullFitness 

(Figure  16B).  This  is  a  strong  argument  in  favor  of  realistic  solvent  models  such  as 

GB-MV2. Noteworthy, the docking of the 3tmn test case was not successful when the tabu 

list  (see  Material  and  Methods)  was  not  used.  This  highlights  the  need  to  limit  the 

sampling of uninteresting regions of the search space, according to the FullFitness, when 

discrepancies are found between the two fitness functions. In a previous study, only ICM 

was able to identify this binding mode correctly but, again, its ROI was not described and 

its sampling might have been limited inside the binding pocket [57].

6.5 Discussion

6.5.1 Benchmarking docking algorithms

Two questions must be addressed to  benchmark a  docking algorithm: 1)  its  ability  to 

generate the good solution through sampling, and 2) its ability to recognize this solution 

as the correct one by its scoring function. Unfortunately, evaluations of sampling heuristic 

and scoring  function are tightly coupled, as scoring failures cannot be identified if the 

good solutions are not even generated. Also, the crystal structure is believed to be at least 

a local minimum of the scoring function. Therefore, if the seeds are too close to the crystal 

structure or if  the region of interest is  too small,  an algorithm with a weak sampling 

heuristic is likely to succeed even if its scoring function is deficient, since it will be unable 

to sample a remote (physically irrelevant) global minimum, and will converge toward the 

closest local one (not far from the crystal structure). The quality of the algorithm is thus 

not assessed and the benchmark is not relevant, because successful predictions can either 

be attributed to a good scoring function or to a lack of sampling [64]. In addition, using 

seeds too close to the crystal structure also implies that the latter is  a priori identified, 

which does not correspond to a real prediction (see list in [64]).
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6.5.2 Our approach

In order to avoid such problems during the benchmark of EADock, a minimal distance of 

3 Å RMSD  between  the  seeds  and  the  crystal  structure  was  enforced  after  random 

rotations and translations of the ligand, as well as modifications of its internal degrees of 

freedom. As a result,  to be successful,  the sampling heuristic must be able to identify 

minima deeper than those provided by this high quality seeding.

Such challenging conditions make a direct comparison between EADock and the programs 

previously benchmarked in [57] on the same validation set difficult for two reasons. First, 

in the previous study, the crystal structure was kept in the seeds. Second, the ROI used 

with EADock in our study encompass 14 % of the receptor surface, whereas the previous 

study defined ROI encompassing only 10 % (AutoDock), 4.6 % (Gold) and 1.7 % (DOCK 

and  FlexX).  While  such  limited  ROI  are  not  suitable  for  the  benchmark  of  docking 

programs  (see  above),  they  are  relevant  if  the  binding  pocket  is  known prior  to  the 

docking study.

Despite  unfavorable  conditions,  the  search  realized  by  EADock  converges  within  only 

50000  SimpleFitness and 15000  FullFitness evaluations on average, depending on the 

evolutionary path explored. This highlights the efficiency of our sampling heuristic, as it 

can be compared to the 2500000 poses evaluated by AutoDock in  [57]. Another recent 

study based on a different test set, reported between 200000 and 400000 evaluations to 

converge [138], depending on the software used. This also corresponds to the number of 

fitness  evaluations  usually  observed  [155].  This good  performance  of  the  sampling 

heuristic of EADock is also supported by the successful docking of all ligands if the RMSD 

is used as a fitness, no matter the distance between the seeds and the crystal structure 

(data not shown). This points out that the success rate of EADock is limited by our scoring 

functions.  Interestingly,  most  scoring failures  may be explained by crystal  contacts  or 

bonds between the ligand and the receptor.

The estimation of  the  binding  free  energy  requires  that  the  predicted and the native 

binding  mode  are  as  close  as  possible.  When  considering  successful  predictions,  the 

average RMSD between crystal structures and binding modes proposed by EADock is only 
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0.75 Å. This gain over other approaches is expected to play a key role for rational lead 

optimization.

To  demonstrate  the  efficiency  of  our  approach  under  extreme  conditions  on  a  real 

application,  the RGD cyclic  pentapeptide was docked on the  V3 integrin.  The same 

docking parameters were used, except that the ROI was set to a sphere with a radius of 

25 Å centered on the binding site, encompassing 65000 Å3. Seeding conformations were 

generated far away from the binding pocket, between 15 Å and 25 Å RMSD to the crystal 

structure.  Despite  these  difficult  conditions,  EADock  is  able  to  identify  the  crystal 

structure, with a RMSD of only 1.17 Å (Figure 19).

This  points out the efficiency of our sampling heuristic and scoring  function in a real 

application, and opens the field of a rational design of active compounds derived from 

Cilengitide, which is of major interest given its clinical impact [156].
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All our results are obtained by the combination of a multi-objective optimization taking 

into account the solvation free energy of the complex, and an efficient sampling heuristic 

able to converge with a very limited number of docking modes evaluation. Taking into 

account  the  solvation  free  energy  with  a  force-field  based scoring  function  has  three 

drawbacks: it  is too sensitive to small variation in the atomic coordinates,  it  does not 

provide a clear driving force, and it is computationally demanding. Our docking algorithm 

proposes convenient solutions for each of these three limitations. First, variations of the 
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Figure 19: Docking of a RGD cyclic pentapeptide on the V3 integrin. Seeds (pink sticks) 

were generated between  15 Å and 25 Å RMSD to the crystal structure (red and green  

circles,  respectively).  The  ROI  was  defined  by  a  25 Å radius  sphere  encompassing 

65449 Å3. The binding mode of the ligand found in the crystal is shown in ball and stick 

(inset). A standard docking was performed, and the top ranked cluster was found to have 

a  binding  mode identical  to  that  of  the  crystal  structure,  as  shown by  the  three  top 

scoring conformations (green sticks). The average RMSD to the crystal structure for these  

three conformations is 1.17 Å.
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effective energy according to the coordinates are smoothed by an averaging over several 

docking modes within the same cluster.  Second, a driving force is introduced into the 

evolutionary  process:  the  SimpleFitness is  used  as  a  filter  for  the  identification  of  a 

reasonable  docking pose.  Third,  as  the  SimpleFitness is  fast  to  compute,  it  is  a  first 

approximation to the expensive  FullFitness. These three improvements allow EADock to 

use a fitness function based on the solvation free energy calculated with the CHARMM 

package. This provides several advantages over other approaches such as universality (i.e. 

it is not limited to docking on proteins) and its average description of the solvent effect. 

The use of this universal scoring function is believed to increase the transferability of our 

results  to  other  receptor/ligand  families  (e.g.  ligand/DNA)  as  well  as  other  docking 

strategies like, for example, molecular fragments. The latter opens the door to a unified 

approach toward FB-RDD.
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7 Applications

7.1 Overview

The ability to identify the most favorable binding mode of small molecules to a biologically 

relevant target opens the door to  in silico structure-based drug design. Aside from the 

methodological  development  described  in  the  previous  chapter,  collaborations  with 

experimentalists  were  carried  out  in  various  fields  and are  described in  this  chapter. 

These collaborations fall into the following categories:

1. understanding the molecular principles governing the regulation of proteins. Two 

examples of major importance, the Na,K-ATPase and the Peroxisome Proliferator-

Activated Receptor α (PPARα) were studied. Among other roles (see below),  the 

main task of the Na,K-ATPase is to keep the Na+ and K+ gradients that permit the 

maintenance of the cell volume and the membrane potential. The latter is a nuclear 

hormone receptor regulating the transcription of genes with consequences on the 

metabolism of lipids.

2. understanding the action of known compounds. The impact of biotransformation on 

the  binding mode of  the  anticancer  drug Imatinib  to  the  c-Abl  kinase,  and the 

molecular mechanism underlying the interaction of two common pollutants with the 

PPARγ were studied.

3. discovering  and  optimizing  new  active  compounds.  Three  studies  targeting  the 

human PPARα, the indoleamine deoxygenase (IDO) and the integrin α5β1 and αVβ3 

were performed. The first is the target for the lipid lowering fibrates, and the two 

latter are recent and interesting targets regarding to cancer therapy [157]. A FB-

RDD approach (see Chapter 1 “Introduction”) was developed with Vincent Zoete. 

This  approach  is  built  around  EADock,  used  in  combination  with  several  other 

software pieces, and is briefly presented in this chapter.

The use of EADock in real applications had a major impact on its development, leading to 
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progressive  improvements  in  terms  of  functionality,  stability  and  usability.  On  the 

technical side, because of the different aims and biological systems investigated during 

these collaborations, the implementation of EADock had to be revisited several times in 

order to gain the required versatility. For instance, specific operators were developed for 

a docking study of the FXYD7 transmembrane helix that is involved in the regulation of 

the Na,K-ATPase pump; pseudo Morse potentials were added to both fitness to mimic the 

creation of a covalent bond between the IDO and its ligands (this improvement is still 

under  investigation  and  not  presented  here,  see  Chapter  4  “Perspectives”);  and  the 

flexibility  of  the  receptor  was  taken  into  account  successfully  when  docking  into  the 

Xenopus PPARα its known regulator Wy-14,643.
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7.2 Understanding molecular principles

7.2.1 Regulation of the Na,K-ATPase

This work has been published in the Journal of Biological Chemistry [158].

7.2.1.1 Biological context

Na,K-ATPase transports three Na+ against two K+ across the plasma membrane of animal 

cells by using the energy of the hydrolysis of ATP. Its main task is the maintenance of the 

transmembrane Na+ and K+ gradients that permit the maintenance of the cell volume and 

the membrane potential. Moreover, Na+ gradients provide the energy for many secondary 

transport systems of vital importance. In addition to these basic functions, Na,K-ATPase is 

involved in many specialized tissue functions such as transepithelial Na+ transport, and 

muscle and neuronal excitability. Due to its important physiological role, Na,K-ATPase is 

finely regulated. Established regulatory mechanisms include changes in the intracellular 

Na+ concentration that produce short term regulation of the Na,K-ATPase transport rate, 

phosphorylation of the subunit by cAMP-dependent protein kinase and protein kinase C 

that  influences  the  distribution  of  Na,K-ATPase  between  the  plasma  membrane  and 

intracellular stores, and long term regulation that increases the number of Na,K-ATPase 

units  [159].  Recently,  a  novel  regulatory  mechanism has been  identified  that  involves 

tissue-  and  isozyme-specific  interactions  between  Na,K-ATPase  and  small  membrane 

proteins  of  the  FXYD  protein  family  [160].  The  FXYD  protein  family  contains  seven 

members that are characterized by one transmembrane domain and a signature sequence 

that contains the FXYD motif and 3 other conserved amino acids  [161].  FXYD2 or the 

subunit  of  Na,K-ATPase  was  the  first  FXYD  protein  that  was  identified  as  a  specific 

modulator of renal Na,K-ATPase [162] [163] [164] [165] [166]. It is now well established 

that  also  FXYD1  [167],  a  phospholemman-like  protein  from  shark  [168],  FXYD4 

(corticosteroid hormone-induced factor) [164] [169], and FXYD7 [170] also play a tissue-

specific  role  in  Na,K-ATPase  regulation.  Significantly,  each  of  these  auxiliary  subunits 

produces a distinct functional effect on Na,K-ATPase that is adapted to the physiological 
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needs of the tissues in which they are expressed. The functional effects of FXYD proteins 

on Na,K-ATPase have been studied extensively, but the molecular basis of these effects is 

unknown, and very little is known on the interaction sites in the Na,K-ATPase and the 

FXYD proteins  that  mediate  the  efficient  association  between these  two proteins  and 

transmit the functional effects of FXYD proteins on Na,K-ATPase. Experiments based on 

thermal denaturation suggest that the association of FXYD2 occurs with transmembrane 

(TM) domains 8–10 (see Figure 21) [171]. Moreover, a recent model [172], deduced from 

an  electron  crystallographic  analysis  at  9.5 Å  resolution  of  renal  Na,K-ATPase  and  by 

taking  as  a  basis  the  high  resolution  structure  of  the  Ca-ATPase  [173],  predicts  that 

FXYD2 is located in a pocket made up of TM9, TM6, TM4, and TM2 of the Na,K-ATPase 

subunit. In this study, we investigated the role of TM9 of the Na,K-ATPase subunit in the 

structural and functional interaction with FXYD proteins. For this purpose, we produced a 

model of the Na,K-ATPase subunit to determine amino acids in the TM9 helix, which point 

to TM2 and which could potentially interact with FXYD proteins.

7.2.1.2 Modeling approach

Based  on  our  previous  homology  model  of  the  Bufo  Na,K-ATPase  [174] in  the  E1 

conformation,  a  model  of  the  FXYD7/Na,K-ATPase  complex  was  built  using  an  early 

version of EADock  [70]. In brief, starting from an arbitrary conformation of the FXYD7 

helix  in  the  vicinity  of  TM2  and  TM9  of  the  Bufo  Na,K-ATPase  subunit,  the  FXYD7 

coordinates  were  refined using two operators  translating  or  rotating  the  FXYD7 helix 

around  a  random axis.  Two other  operators  were  designed  to  rationalize  the  search, 

performing rotations around or translations along the axis of the modeled fragment of 

FXYD7 (Figure  20A and  Figure  20B,  respectively).  The  fifth  and  last  operator  was  a 

semistochastic  Interpolator combining  two high  scoring  complexes  to  generate  a  new 

position and orientation of the FXYD7 fragment (Figure 20C).

After each operator was applied, a short energy minimization of the FXYD7 helix as well 

as TM9 and TM2 residues was performed using the CHARMM program. The minimization 

consisted of 30 steps of steepest descents followed by 50 steps of Adopted Basis Newton-

Raphson. The fitness of a complex was defined as its total enthalpic energy calculated by 
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CHARMM using the CHARMM22 [43] parameters with a soft van der Waals potential. An 

implicit lipid layer was added by means of a dielectric switch in the Generalized Born-

Simple Switch solvation model  [175] [176] with its default parameter set. No mutation 

data were used in the conformational space sampling nor in the ranking of the complexes. 

The best  scoring complexes generated during the evolutionary  search were clustered, 

based on heavy atom root mean square difference values, and a contact list was generated 

for each cluster.

7.2.1.3 Results

Two clusters were identified: the lowest energy cluster A (83% of the conformers), and 

cluster  B  (17% of  the  conformers)  with  a  mean energy  of  +63 kcal/mol  compared to 

cluster  A.  Both  clusters  share  the  same  anchoring  of  FXYD7  in  the  cleft  near  the 

extracellular space, with contacts involving residues Gln26 (cluster A) and Thr27 (cluster 

B) of FXYD7, with Phe967 from TM9 (Figure 21). FXYD7 interacts with residues Ile953, 

Phe956, Glu960, Leu964, and Phe967 and Leu968 from TM9 and Tyr149, Ile143, Arg156, 

and Ile157 from TM2. Two residues of FXYD7 (Met30 and Phe37) are overrepresented in 

the contact list. Met30 is close to both Leu964 and Leu968 (TM9) and Ile142 (TM2). Two 

alternative rotamers for Phe37 were isolated in each cluster with favorable interactions 

with  either  Phe956 (TM9)  or  Tyr149 (TM2).  Next  to  Phe37,  Val38 also  interacts  with 

Tyr149 (TM2). Two hydrophobic residues of FXYD7, Ile44 and Leu45, fill the widest part 

of the TM9 –TM2 groove, stabilized by several contacts with Ile953 and Ile157 (structures 

from cluster B) or Arg156 (aliphatic part of the side chain, structures from cluster A).
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Figure  20: Operators designed for the docking of the FXYD7 into the Na,K-ATPase. See 

text for details

  A B C
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Figure 21: Docking results. Left, overview of the Na,K-ATPase subunit, showing TM2 and  

TM9, and two average structures from cluster A (green) and B (red). The location of the 

membrane  is  represented  by  a  transparent  rectangle.  Right,  detailed  view  of  the  

interaction between TM9 (left) and TM2 (right) and two average structures of FXYD7,  

from cluster A (green) and B (red). Heavy atoms of residues involved in the interaction 

are shown in blue for the Na,K-ATPase subunit and in green or in red for cluster A and B.

Table 5: Contact list derived from the docking calculations. See text for details.

FXYD7 residues Interaction with Na,K-ATPase subunit
Cluster A Cluster B

Gln26 Phe967 Phe967
Thr27 Phe967
Met30 Ile142/Leu964 Ile142/Leu964/Leu968
Phe37 Tyr149/Phe956 Tyr149/Phe956/Glu960
Val38 Tyr149 Tyr149
Ile41 Ile953
Ile44 Ile953 Ile953

Leu45 Arg156 Ile157



7.2.1.4 Conclusion

The model of FXYD7 docked with the Na,K-ATPase subunit in the E1 conformation is in 

excellent  agreement  with  the  experimental  data  [158].  All  residues  in  TM9,  Ile953, 

Phe956, Glu960, Leu964, and Phe967, identified by the mutagenesis analysis are involved 

in contacts between FXYD7 and the Na,K-ATPase subunit in the model. In addition, the 

model  predicts  Ile142,  Tyr149,  Arg156,  and  Ile157 in  TM2 and Gln26,  Met30,  Val38, 

Phe37, Ile41, Ile44, and Leu45 in FXYD7 as interaction sites.

Interestingly, the stabilizing interactions involving Leu964 and Phe967 in TM9 are similar 

in both clusters. Gly29 and Gly40 in FXYD7, the substitution of which has previously been 

shown experimentally to significantly affect the association efficiency with Na,K-ATPase 

[177],  were not predicted to form favorable contacts by the docking. It  remains to be 

shown whether substitution of  these glycine  residues could perturb correct  folding of 

FXYD  proteins,  thus  limiting  complex  formation.  Alternatively,  it  remains  to  be 

investigated whether there might be a correlation between the potential implication of 

Gly40 in  oligomer  formation  [178] and  the  association  efficiency  of  Gly40 mutants  in 

FXYD7 as well as in FXYD2  [179]. Finally, the residues suggested by the docking study 

only, such as, Tyr149, Ile157, Arg156, Ile142, and Leu968 in the Na,K-ATPase subunit, and 

the  predicted  amino  acids  in  FXYD7,  are  good  candidates  for  further  mutagenesis 

analysis.

7.2.2 Regulation of the nuclear hormone receptor PPARα

This work was carried out by Vincent Zoete, Aurélien Grosdidier and Pierre Chodanowski 

during a collaboration with the groups of Liliane Michalik and Walter Wahli (UNIL-Center 

for Integrative Genomics). It has been published recently [180].

7.2.2.1 Biological context

Peroxisome proliferator-activated receptors (PPARs) are members of the nuclear receptor 

family. As ligand-dependent receptors, PPARs form heterodimers with the RXR and adopt 

an active conformation in the presence of  an agonist  [181].  Natural  ligands of  PPARs 
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include fatty acids (FA) and eicosanoids. Additional co-activator proteins are recruited to 

create  a  complex  that  binds  to  peroxisome  proliferator  response  elements  (PPRE)  in 

target genes and stimulates their expression. In addition to this canonical mechanism, it 

has been recently found that PPARs can also function independently, in the absence of a 

hetero-partner  [182].  Three  isotypes  of  human  PPAR,  called  α,  γ  and  β/δ,  have  been 

characterized  [183], showing distinct tissue distributions, physiological roles and ligand 

specificity. These aspects have been intensively reviewed in recent years [183] [184] [185] 

[186] [187] [188].  In  brief,  PPARα  is  found  in  liver,  kidney,  heart,  and  muscle.  It  is 

important for the uptake and oxidation of FA and lipoprotein metabolism. PPARα is the 

target  for  the  lipid  lowering  fibrates.  PPARγ  is  localized  in  fat,  large  intestine,  and 

macrophages. It plays an important role in adipocyte differentiation and is the receptor 

for  a  well-known  class  of  antidiabetic  insulin  sensitizers  drugs,  the  thiazolidinediones 

(TZD), such as rosiglitazone. PPARδ is expressed in most cell types. PPARδ agonists play 

important  roles  in  dyslipidemia,  cancer  treatment,  and  cell  differentiation  within  the 

central nervous system.

A “mouse trap” model of the ligand-dependent transcription factors activation has been 

proposed by D. Moras and coworkers and is now widely accepted [189]. In this model, the 

AF-2 helix H12 closes on the ligand binding site in response to ligand binding and the 

resulting active form of the receptor can bind a co-activator.

The study of ligand binding domains (LBDs) suggest that the receptors can adopt the 

active conformation even in the absence of agonists  [190] [191], in agreement with the 

existence of a basal activity in absence of ligand [192]. All these data indicate that PPAR 

LBD acts as a dimmer switch and does not adopt a well-defined structure in the absence 

of ligand, but rather shows an equilibrium of conformations  [193] [194]. Ligand binding 

would shift this conformational equilibrium to a state that favors co-activator recruitment, 

through direct contacts between the ligand and the AF-2 domain and a global stabilization 

of the LBD (see Figure 22). The dynamic properties of helix 12 are a major determinant of 

AF-2 domain activity, and were investigated using in silico approaches, in presence and in 

absence of the ligand, in the Xenopus PPARα (xPPARα).
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A recent review about PPAR structure in relation with ligand specificity, molecular switch 

and interactions with regulators is available in [197].

7.2.2.2 Modeling approach

7.2.2.2.1 Deriving the apo xPPARα model

Since the experimental structure of xPPARα in complex with Wy-14,643 is not available, 

an homology model of the xPPARα ligand binding domain (SwissProt accession number 

P37232) was built using MODELLER v6.2 [198], using the human PPARα (PDB code 1K7L) 

as  a  template.  In  this  structure,  helix  12  is  in  the  closed  and  active  conformation. 
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Figure  22:  Structural  superposition  of  PPARα/GW409544/SRC-1  [195] (white)  and 

PPARα/GW6471/SMRT  [196] (magenta).  In  the  PPARα/GW409544/SRC-1 structure,  the 

AF-2 helix  H12 in its  active conformation and the SRC-1 co-activator are orange and  

green,  respectively.  In  the  PPARα/GW6471/SMR  structure,  the  AF-2  helix  H12  in  an  

inactive conformation and the SMRT co-repressor are yellow and blue, respectively. The 

co-repressor occupies partly the position of the active conformation of AF-2.



CLUSTALW was used to perform a pairwise sequence alignment of the Xenopus laevis and 

human sequences.  The  sequence  identity  between the  two molecules  is  90%.  Default 

parameters of the homology modeling routine were used. The energy of the model was 

then minimized using the CHARMM program and the CHARMM19 force field,  with a 

dielectric  constant  of  1  and  a  20 Å cutoff.  The  minimization  consisted  of  30  steps  of 

Steepest Descent (SD) followed by 30 steps of Adopted Basis Newton-Raphson (ABNR). 

The positions of the Cα atoms were constrained using a mass weighted harmonic force 

constant of 10 kcal/(mol Å2).

7.2.2.2.2 Docking of Wy-14,643

Missing parameters for the ligand, for use in conjunction with the CHARMM22 all atoms 

molecular  mechanics  force  field,  were  derived  from the Merck Molecular  Force Field 

(MMFF), by taking the dihedral angle term as is, but only the quadratic part of the bond 

and angle energy terms. The partial charges and van der Waals parameters of the ligand 

atoms were taken from the MMFF. The ligands were modeled with all hydrogens. 

Based on the xPPARα model mentioned above, a model of the xPPARα/Wy-14,643 complex 

was built using EADock  [70]. Details of the calculations are presented in chapter 2. In 

brief, starting from a set of 250 randomly generated initial conformations, positions and 

orientations of Wy-14,643 inside the known binding site of xPPARα, the coordinates of the 

ligand were  refined using several  operators,  renewing 10% of  the population at  each 

generation.  Thorough exploration of  the accessible  conformational  space of  the ligand 

relative to the protein surface was submitted to the evolutionary pressure of a scoring 

function that takes account of the solvent effect thanks to the GB-MV2 implicit solvent 

model. Residues of the binding site were flexible during the docking to account for the 

inherent inaccuracy of coordinates in the xPPARα model, and of the induced fit of the 

protein in the presence of the ligand. These include residues 247, 253, 257, 278-279, 281-

283, 285-286, 320, 323-324, 327, 336, 338, 345, 360-361, 446, 450 and 470. After 400 

generations,  the conformations with the lowest energy were further minimized by 100 

steps of SD using the GB-MV2 generalized Born model. The lowest energy conformation 

was used for further molecular dynamics simulation.
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7.2.2.3 Results

A schematic representation of the hydrogen bonds and the van der Waals interactions 

between xPPARα and Wy-14,643 in the calculated binding mode is given below in Figure

23.

The polar carboxylate function of Wy-14,643 makes hydrogen bonds with the side chains 

of residues Ser286, Tyr320,  His446 and residue Tyr470 of Helix 12. Such a hydrogen 

bond pattern has already been found experimentally, for example between the carboxylate 

head of the AZ242 [200], of the TZD head group of the rosiglitazone (PDB code 1FM6) and 

GW409544  [195] ligands  and  the  corresponding  polar  residues  of  the  human  PPAR 

protein:  Ser280,  Tyr314,  His440  and  Tyr464.  Other  studies  aiming  at  docking 

theoretically some PPAR ligands with the FlexX  [47] program also found similar results 
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Figure 23: 3D representation of hydrogen bonds between xPPARα and Wy-14,643, in the 

binding mode proposed by EADock. The figure was done with the VMD program.[199] 



[201] [202]. An additional hydrogen bond takes place between the NH aniline function of 

Wy-14,643 and the side chain OG atom of Ser286 (Figure 23). The hydrophobic tail of Wy-

14,643 extends in the hydrophobic pocket of  the LBD, where it  makes van der Waals 

contacts  with  Phe279,  Cys282,  Thr285,  Thr289,  Met323,  Phe324,  Leu325,  Val340, 

Met336, Val338, Met361 and Val450.

7.2.2.4 Conclusion

Starting from this complex model, the role of the ligand binding on the protein stability, 

has been investigated using the approach developed by V. Zoete and M. Meuwly  [203]. 

The method is based on the notion that the binding free energy corresponding to the 

alchemical complexation of a given side chain (considered as a “pseudo-ligand”) into the 

rest of the protein (considered as a “pseudo-receptor”) reflects the importance of this side 

chain to the thermodynamic stability of the protein  [203]. This method could explained 

experimentally determined variations in PPAR activity upon mutation of some helix 12 

residues, and reversely, it pointed out important additional residues that were confirmed 

experimentally.

In  order  to  reveal  the  key  principle  behind  helix  12  regulation,  we  combined  the 

functional study of PPARα mutant transcriptional activity and MD simulations. These two 

approaches  used  very  different  observation  time  windows,  the  former  analyzing  the 

steady state receptor activity, and the latter local changes at the nanosecond scale. The 

findings  of  the  molecular  modeling  simulations  have  triggered  functional  validation 

experiments and, reciprocally, intriguing experimental results suggested new molecular 

modeling simulations that helped in their interpretation. The complementation of the two 

approaches and the concordance in the results enabled us to draw robust conclusions 

regarding the molecular mechanisms governing PPARα helix 12 regulation. See [180] for 

further details.
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7.3 Understanding the action of known compounds

7.3.1 Docking of DEHP/MEHP on the nuclear hormone receptor PPARγ

This  work  has  been  carried  out  by  Vincent  Zoete  and  Aurélien  Grosdidier,  during  a 

collaboration  with  the  group  of  Béatrice  Desvergne  (UNIL-Center  for  Integrative 

Genomics). It has been submitted recently.

7.3.1.1 Biological context

Exposure to  endocrine disrupting chemicals  (EDCs)  can lead to  detrimental  effects in 

human and animal populations by interfering with the synthesis, the elimination and the 

mechanisms  of  action  of  hormones.  At  the  molecular  level,  these  compounds  act  by 

activating or  inhibiting  enzymatic  activities  of  hormone biosynthesis  and  by targeting 

nuclear receptors (NRs), a class of transcription factors that regulate gene expression 

programs in response to lipophilic hormones and mediators. NRs constitute a wide family 

of receptors regulating diverse physiological actions, out of which most members share 

the capacity to regulate gene expression in response to ligand binding.

Metabolism constitutes an aspect of the maintenance of homeostasis that requires the 

cooperation of various organs in order to control the balance between energy storage and 

utilization according to the nutritional status and the needs of the organism. This balance 

is regulated at  the transcriptional level by the integrated action of nuclear receptors as 

well  as  other  transcription  factors.  The  prevalence  of  the  metabolic  syndrome  has 

dramatically  increased  during  the  past  decades  and  it  has  been  suggested  that 

predisposition  to  obesity  could  be  acquired  during  fetal  development,  both  through 

nutritional supply and exposition to environmental factors.

Given their central role in metabolic regulations, PPARs potentially constitute important 

targets  for  environmental  factors.  The  large  PPAR  ligand-binding  pocket  that  can 

accommodate a wide variety of ligands [197] raises the question of whether PPAR activity 

and PPAR-regulated pathways could be affected by an exposure to EDCs. We have focused 
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the present study on the interference of phthalate esters with PPAR regulated processes. 

Phthalates are widely used industrial chemicals which primarily serve as plasticizers to 

soften PVC but are also found in cosmetics, perfumes and certain drugs as well  as in 

industrial paints and solvents. Di-Ethyl-Hexyl-Phthalate (DEHP,  Figure 24) is among the 

most abundantly used phthalate esters with an annual worldwide production estimated 

around 2 million tons according to Swiss authorities (Federal Office of Public Health4). 

DEHP is incorporated non-covalently into flexible plastics used for manufacturing a wide 

variety of daily products including medical devices and food packaging and its propensity 

to leach can lead to high levels of human exposure. The biological effects of DEHP are 

hence of major concern but so far elusive.  Upon ingestion, pancreatic lipases present in 

the  intestine  convert  DEHP  to  its  monoester  equivalent  Mono-Ethyl-Hexyl-Phthalate 

(MEHPP,  Figure  24)  which  is  preferentially  absorbed.  In  addition,  MEHP can also  be 

produced by plasmatic and hepatic lipases, which transform DEHP directly reaching the 

blood through absorption or medical contamination. This metabolite activates the three 

PPAR isotypes and mediates the action of DEHP on hepatic peroxisome proliferation via 

PPARα. In this study, we focused on the mechanisms through which MEHP interferes with 

PPARγ signaling as mentionned in 7.2.2.1. PPARγ is localized in fat, large intestine, and 

macrophages. It plays an important role in adipocyte differentiation and is the receptor 

for  a  well-known  class  of  antidiabetic  insulin  sensitizers  drugs,  the  thiazolidinediones 

(TZD).

4 http://www.bag.admin.ch/themen/chemikalien/00228/01378  
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Figure 24: chemical structures of the Mono-Ethyl-Hexyl-Phthalate (MEHP, A) and the Di-

Ethyl-Hexyl-Phthalate (DEHP, B)
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7.3.1.2 Modeling approach

The binding of R- and S-MEHP was modeled using EADock, based on two structures of 

hPPARγ complexed to AZ242 (PDB reference 1I7I) and to an  α-aryloxyphenylacetic acid 

partial agonist (1ZEO) in order to take into account a possible induced fit of the protein by 

ligand  complexation.  In  brief,  starting  from  a  set  of  250  randomly  generated  initial 

positions of MEHP in the PPARγ binding site, the coordinates of the ligand were refined 

using several operators, renewing 10% of the population at each generation. The docking 

was stopped after  400 generations  and the conformation  with  the  lowest  energy  was 

retained.

7.3.1.3 Results

In  order  to  characterize  whether  differences  in  binding  mode could  potentially 

account for the different activation properties of MEHP and Rosiglitazone, we modeled 

the binding of MEHP to two structures of the PPARγ ligand binding pocket (LBD) and 

compared it to the binding of Rosiglitazone available from the crystal structure of the 

PPARγ LBD in complex with this agonist . The results obtained for the docking of MEHP in 

the 1I7I and 1ZEO structures of hPPARγ are very similar  and both the R- and the S-

enantiomer of MEHP could fit in the PPARγ LBD (data not shown). Although explored by 

the ligand during the docking process, the additional pocket of 1ZEO was not used in the 

proposed binding mode (see supplementary information). MEHP contacted S289, H323, 

H367 and Y473 (A), a set of residues important for the stabilization of the interaction 

between  Rosiglitazone  and  the  receptor  (B).  Furthermore,  the  contact  between  the 

carboxylate function of the phtalic acid ring and Y473, a residue from helix 12 important 

for transcriptional activation, suggests that the activity of MEHP relies on the stabilization 

of helix 12.

7.3.1.4 Conclusion

These observations support the absence of activity of the DEHP parent compound 

where  this  carboxylate  is  esterified  by  a  bulky  and  hydrophobic  chain.  MEHP  and 
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Rosiglitazone bind to the PPARγ LBD in similar configurations where only one side of the 

T-shaped binding pocket is occupied and where similar residues are contacted. Thus, the 

difference in affinity and in efficacy between MEHP and Rosiglitazone most likely reflects 

subtle  variations  in  the  binding  mode,  which  lead  to  less  productive  conformational 

changes  upon  MEHP  binding.  However,  the  full-characterization  of  the  differential 
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Figure  25: MEHP and Rosiglitazone bind similarly to the PPARγ ligand binding domain. 

The binding of the R enantiomer of MEHP to the human PPARγ LBD (structure 1I7I) was 

modeled  as  described  in  the  material  and  methods  section  (A)  and  compared  to  the  

reported  structure  of  the  hPPARγ LBD  complex  with  Rosiglitazone  (B).  Left  panels  

represent  interactions  with  key  residues  of  the  LBD.  Middle  panels  describe  the 

positioning in the LBD cavity where asterisks represent the two parts of the T-shaped 

ligand binding pocket. The right panels show the position of the ligand in the secondary 

structure of the receptor. Helices contacting the ligand are colored as follows: H3, green;  

H5, orange; H11, red and H12, blue. Note that hydrogen atoms of Rosiglitazone are not  

represented because not present in the PDB structure.
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changes in the three-dimensional structure of the LBD would require the crystallization of 

the PPARγ LBD in complex with MEHP.

7.3.2 Impact of the biotransformation of the Imatinib on its binding mode

This  work  has  been  carried  out  by  Vincent  Zoete  and  Aurélien  Grosdidier,  during  a 

collaboration with Bertrand Rochat, responsible for the quantitative Mass Spectrometry 

Facility shared by the Faculté de Biologie et Médecine of the Université de Lausanne. It 

has been submitted recently.

7.3.2.1 Biological context

Protein  kinases  are  enzymes  transferring  phosphate  from  adenosine  triphosphate  to 

specific  amino  acids  of  substrate  proteins,  activating  signal-transduction  pathways 

involved in variety of biologic processes. Several of these protein kinases are deregulated 

and over expressed in human cancers, such as the Bcr-Abl tyrosine kinase involved in 

chronic myelogenous leukemia (CML),  which have been extremely studied  [204] [205] 

[206] [207] [208]. The phosphorylations mediated by Bcr-Abl are impaired by the drug 

Imatinib (Gleevec®, Figure 26), which is extremely efficient against CML [209] [210].

Besides  the  variability  of  systemic  pharmacokinetics  mediated  by  hepatic  drug 

metabolizing enzymes (DME), DME activity in the targeted cells may be relevant for drug 

disposition in tumors  [211] [212]. Indeed, in addition to the activity of influx and efflux 

systems through the membrane of cancer cells, it appears crucial to study local activity of 

DME  to  better  understand  bioactivation  or  degradation  inside  the  target  cells.  Data 

underscoring that  specific  drug metabolism in cancer cells  may play  a  role in cancer 

resistance  are  accumulating.  Recent  results  [213] have  shown that  DME are  able  to 

biotransform Imatinib  in  six  different  metabolites  that  were  identified  and  elucidated 

using liquid chromatography coupled with tandem mass spectrometers: one N-demethyl, 2 

hydroxy (identified as Unk#3 and Unk#5) and 3 N-oxide (identified as Unk#6, Unk#7 and 

Unk#8) (Figure 26).

To investigate qualitatively the effect of these biotransformations on the ligand affinity 
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relative  to  Imatinib,  these  6  metabolites  have  been  docked  to  Abl  in  its  inactive 

conformation using EADock.

7.3.2.2 Modeling approach

7.3.2.2.1 Parameters and coordinates handling.

Missing  parameters  for  Imatinib  and  its  metabolites,  for  use  in  conjunction  with  the 

CHARMM22 [43] all atoms molecular mechanics forcefield were derived from the Merck 

Molecular Force Field (MMFF [147] [148] [149] [150] [151]), by taking the dihedral angle 

term as is, but considering only the quadratic part of the bond and angle energy terms. 

The partial charges and van der Waals parameters of the ligand atoms were taken also 

from the MMFF. The ligands were modeled with all hydrogens.

The simulations were performed starting from the X-ray structure of the c-Abl kinase in 

complex with Imatinib resolved at 2.1 Å: (entry 1IEP in the Protein Data Bank). Titratable 

groups were taken in their  standard protonation state at neutral  pH. The protonation 

states of the histidine residues were set based on visual inspection of their environment. 
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Figure  26: Chemical structure of Imatinib (Gleevec®; C29H31N7O; monositotopic mass = 

493.3 Da) with the structure proposal of Imatinib metabolites formed in the microsomal 

incubations and studied in this work. The interrogation mark indicates that, according to  

published spectral data, the structure of Unk#5 could be the hydroxy benzylic metabolite.  

The position of the hydroxy group of Unk#3 can take place at 4 carbons numbered a, b, c 

and  d.  Therefore,  the  Unk#3  possible  chemical  structures  were  defined  as  Unk#3a, 

Unk#3b, Unk#3c or Unk#3d.
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The isolated complex was minimized using 100 steps of Steepest Descent (SD) algorithm 

using  the  GB-MV2  Generalized  Born  model  to  remove  sterical  clashes  in  the  X-ray 

structure. The heavy atom RMSD between the X-ray structure and the minimized molecule 

is  only  0.1 Å.  All  calculations  were  performed  using  the  CHARMM program  (version 

c31b1) and the CHARMM22 forcefield.  The ligand was removed from the binding site 

before performing the docking. 

7.3.2.2.2 Docking of Imatinib and its metabolites to c-Abl kinase.

The crystal structure of the catalytic region of human Abl kinase in complex with Imatinib 

has indicated that the interaction takes place at the kinase domain in the inactive and 

unphosphorylated conformation  of  Abl  and engage 21 amino acid  residues  [214].  The 

docking of Imatinib and its metabolites to c-Abl kinase were performed using the EADock 

program  [70]. The details of the calculations are presented in Chapter 2 “Material and 

Methods”. In brief, starting from a set of 250 randomly generated initial conformations, 

positions and orientations of the ligand in the region of the c-Abl kinase binding site, the 

coordinates of the ligand were refined using an evolutionary algorithm, renewing 10% of 

the  population  at  each  generation.  The  thorough  exploration  of  the  accessible 

conformational space of the ligand relative to the protein surface was submitted to the 

evolutionary pressure of a scoring function that takes account of the solvent effect thanks 

to  the  GB-MV2  implicit  solvent  model.  The  maximum  allowed  distance  between  the 

explored putative binding modes and the center of the binding site was 10 Å. This defined 

a search space encompassing the exterior of the binding site, in case a given metabolic 

modification of Imatinib would prevent a docking into the protein binding site. Protein 

residues were fixed during the docking. After 400 generations, the conformations with the 

lowest energy were further minimized by 100 steps of SD using the GB-MV2 generalized 

Born model. The lowest energy conformation was retained.
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7.3.2.2.3 Calculation of void regions between Imatinib and c-Abl kinase.

The calculation of void regions between Imatinib and the c-Abl kinase was performed 

using the SURFNET program  [215] implemented in UCSF Chimera molecular graphics 

software. Default parameters were used.

7.3.2.3 Results

The docking of Imatinib to c-Abl kinase was performed to critically assess the approach, 

thanks  to  the  availability  of  the  complex  X-ray  structure.  The  RMSD  between  the 

experimental and calculated binding modes of Imatinib is only 0.17 Å. All the important 

interactions  between  the  ligand  and  the  protein  determined  experimentally  are 

reproduced in the modeled complex, illustrating the relevance of our method.

The different Imatinib metabolites were docked to c-Abl kinase, and are shown in the 

Figure 27 and in  Table 6. The proposed binding modes for all Imatinib metabolites are 

very similar to that of the native molecule; i.e. none of these metabolic modifications was 

found to prevent the docking. However, several meaningful differences were found.
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In the case of metabolites #3a and #8, the metabolic modification implies the addition of 

a bulky hydroxyl  group or oxygen atom in a position where no space is found by the 

SURFNET program in the native Imatinib/c-Abl kinase complex (Figure 27A). Position #3a 

of the native Imatinib is in contact with the side chain of Tyr253, while position #8 (i.e. 

the nitrogen atom of the pyridine cycle) makes a hydrogen bond with the backbone NH 

atoms of Met318. Consequently, in the binding modes calculated by EADock for these two 

metabolites, the pyridine cycle is flipped so that the additional atoms point toward a void 

region in the complex (Figure 27B and  Figure 27C). In both cases, the hydrogen bond 
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Table  6: a Metabolites of Imatinib; the proposed structures are shown in  Figure 27. b 

Sterical clash between the added group and the protein in the Imatinib binding mode. The 

calculated  binding  mode  of  the  mutant  is  thus  modified  in  this  region  (see  text).  c  

Modifications in the interaction scheme within the ligand or between the ligand and the 

protein; bb: backbone. sc: side chain. H-Bond: hydrogen bond. d Possible effect on ligand  

affinity relative to Imatinib. This is indicative and should be taken with care.

  

nonoNoN-demethyl

DecreaseLoss of H-Bond N-pyridine / Met318 bb HNYesUnk#8

nonoNoUnk#7

DecreaseLoss of H-Bond piperidine / Ile360 and His361 bb CONoUnk#6

nonoNoUnk#5

IncreaseAdditional internal H-Bond within ligandNoUnk#3d

IncreaseAdditional H-Bond OH / Met318 bb CONoUnk#3c

nonoNoUnk#3b

DecreaseLoss of H-Bond N-pyridine / Met318 bb HNYesUnk#3a

Effect on affinity dModification in the Interaction cSteric. Clash bMetabolites a

Figure 27: Docking of Imatinib metabolites. See text for details. (A) Imatinim, (B) Unk#3a, 

(C) Unk#8, (D) Unk#6, Unk#3c, Unk#3d



between the nitrogen atom of the pyridine cycle and the NH backbone atoms of Met138 is 

lost. In the case of metabolite #3a, the flipped conformation allows an internal hydrogen 

bond between the additional hydroxyl group and a nitrogen atom of the ligand pyrimidine 

cycle (Figure 27B). According to EADock, the oxidation of the N-methyl group (metabolite 

#6) of the piperidine cycle also has an impact on the ligand binding mode. In this case, 

the  added  oxygen  atom is  shown  to  prevent  the  hydrogen  bond  that  is  taking  place 

between the protonated N-methyl group of the Imatinib piperidine cycle and the Ile360 

and  His361  backbone  carbonyls.  This  leads  to  a  modified  position  of  the  oxidized 

piperidine cycle according to the native Imatinib (Figure 27D). In the three cases, the 

binding mode of the rest of these metabolites is similar to that of the native Imatinib. The 

binding  mode modifications  described  above  reveal  the  sterical  incompatibility  of  the 

metabolites for the exact binding mode of the native Imatinib without protein or ligand 

conformational  rearrangements.  Since  no  compensatory  favorable  interaction  between 

the ligand and the protein is added by the modifications, this may be expected to cause a 

significant decrease of the ligand affinity for the protein.

All other metabolites (#3b, #3c, #3d, #5, #7 and #9) were shown theoretically to dock 

into the c-Abl kinase similarly to Imatinib. This result is in agreement with the fact that 

these  metabolic  modifications  imply  an  addition  in  a  void  region  of  the  c-Abl 

kinase/Imatinib complex according to SURFNET. However, some of these modifications 

change  the  interaction  scheme  between  the  ligand  and  the  protein.  In  the  case  of 

metabolites #3c, the added hydroxyl group makes a hydrogen bond with the backbone 

carbonyl of Met318 (Figure 27E). In metabolite #3d, the added hydroxyl group makes an 

internal hydrogen bond with a nitrogen atom of the pyrimidine cycle of the ligand (Figure

27F). These additional interactions between the ligand and c-Abl kinase, or within the 

ligand,  might  increase the  ligand affinity  for  the  protein.  This  later  statement  should 

warrant further investigations, both in silico and in vitro.
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7.4 Lead discovery and optimization

7.4.1 Material and Methods

7.4.1.1 Overview
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Figure 28: Overview of our generic rational drug design pipeline. Data are shown in blue,  

except starting and final data in green and red, respectively. Methods are shown in yellow. 

The optimization cycle is materialized by red arrows. See text for details.
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A FB-RDD approach (see Chapter 1 “Introduction”), essentially using EADock, was used to 

design  new  peptidic  ligands  of  the  α5β1  integrin  and  of  the  human  PPARα  nuclear 

hormone receptor. An outline of this approach, which is believed to lead to an optimized 

lead compound starting from the molecular structure of a biological target, is presented in 

Figure 28.

In this approach, maps of all most favorable positions and orientations of small molecular 

fragments on the protein surface are calculated using the EADock program (see  Figure

28). These fragments can be classified in frameworks and side chains  [99] [100]. In our 

approach, frameworks are typically fragments of known lead compounds or virtual lead 

compounds (i.e. compounds designed ab initio and presenting a binding mode calculated 

by  EADock  compatible  with  the  targeted  binding  site,  which  is  well  defined  and 

reproducible).  Side  chains  are  small  chemical  fragments  that  could  be  linked  to 

frameworks. In the case of peptide design,  they correspond to all  natural side chains, 

except glycine, which has no side chain, and proline. Once their most favorable positions 

in the binding site of the protein have been calculated with EADock, the possible linkings 

between frameworks and side chains are investigated by checking some geometrical and 

chemical rules (see Figure 29).
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Figure  29: Distance and angles that are checked to verify the possibility of linking the  

backbone of a peptidic lead compound (top) with a putative side chain (bottom).



In the case of peptide design, the distance between the Cα backbone atom and the Cβ 

putative side chain atom should be close to 1.54 Å, while the different angles Cα-Cβ-Cγ, N-

Cα-Cβ, H-Cα- Cβ and C-Cα- Cβ should be close to 109-110˚. Given the corresponding virtual 

mutations, a list of putative peptide ligands is constructed in a combinatorial way. Then, 

each of these putative ligand is docked in silico in the protein active site using EADock. 

The most promising ones, in terms of interactions with the targeted protein, are retained 

for further modifications using the same FB-RDD approach. This new cycle of optimization 

might lead to new putative mutations in response to an eventual limited repositioning of 

the peptide backbone during the docking step. This procedure might be repeated several 

times (see  Figure 28, “optimization cycle”),  finally leading to a list of molecules to be 

tested experimentally. The measured experimental affinity might be used to generate a 

QSAR model that could be used in subsequent dockings (see Chapter 4 “Perspectives”).

7.4.1.2 EADock

EADock  is  used for  the  in  silico docking experiments,  i.e.  finding  the  most  favorable 

binding mode of a given ligand [70]. It is also used to calculate maps of the most favorable 

positions of frameworks and side chains,  using the following modified parameters. The 

cluster size was reduced to 1.5 Å, with a maximum of 5 members, and the total population 

size  was  increased  to  500  members.  The  blacklisting  procedure  was  switched  off  to 

preserve all the most favorable binding modes generated during the evolutionary process. 

A radius of 15 Å was used to define the region of interest, encompassing the targeted 

binding site.

7.4.1.3 Forcefield

All  molecular  mechanics  calculations  were  performed  using  the  CHARMM  program 

(version c31b1)  and the CHARMM22 forcefield.  Titratable groups were taken in  their 

standard protonation state at neutral pH. The protonation state of the histidine residues 

were set based on visual inspection of their environment.
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7.4.2 Targeting the integrin

This work is being carried out by Vincent Zoete and Aurélien Grosdidier, in collaboration 

with Curzio Rüegg and Gian Carlo Alghisi from the Laboratory of tumor angiogenesis and 

melanoma research of the Centre Hospitalier Universitaire Vaudois.  the corresponding 

manuscript is in preparation.

7.4.2.1 Biological context

The  survival  of  cells  depends  on  many  factors,  among  which  the  attachment  to 

extracellular  matrix  (ECM) components,  mediated by cell  adhesion  molecules  such as 

integrins. Integrins are transmembrane αβ-heterodimeric proteins. 18 α and 8 β subunits 

have been identified, forming 24 known dimers whose expression depends on cell type 

and cellular function. They are reviewed in [216] [217] [218]. Each integrin subunit has a 

large extracellular, a short transmembrane and small intracellular domains. They are the 

main  receptors  for  ECM  proteins  like  collagen,  fibronectin  and  laminin.  Cell–matrix 

interaction via integrins is essential for embryonic development, proliferation, survival, 

adhesion, differentiation, and the migration of cells  [218] [219] [220] [221] [222] (see 

Figure 30).
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Tumor cells have developed effective mechanisms to escape contact inhibition, which is 

mediated  by  such  cell  adhesion  molecules.  The  over  expression  or  loss  of  integrin 

contributes to several tumors, and changes in integrin expression patterns differentially 

affect tumor invasion and metastasis [224] [225] [226] [227] [228].

At the crossroad of such a major survival pathway, integrins are particularly interesting 

targets for cancer therapy, and a number of ligands have already been designed  [157]. 

The Cilengitide is one of the most promising one. This cyclic pentapeptide c(RGDf(NMe)V) 

contains the RGD motif also found in fibronectin, known to bind to most integrins. It was 

found to be an efficient αVβ3 and α5β1 (to a lower extent) integrin inhibitors that limits 

tumor growth and angiogenesis, and is currently studied in clinical trials (phase I or II 

depending  on  the  indication,  see  Chapter  1  "Introduction").  Our  FB-RDD  approach 

described above was used to propose new peptide inhibitors using the RGD motif as a 

template.

7.4.2.2 Assessment of EADock

The ability of EADock to properly dock peptides on the surface of integrin molecule was 

assessed  using  the  Cilengitide/αVβ3  integrin  complex  for  which  an  X-ray  structure  is 
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Figure 30: Overview of the integrin pathway [223].



available (1L5G in the PDB). Rapidly, EADock was found to reproduce the experimental 

binding  mode  of  Cilengitide,  with  a  RMSD  of  1.17 Å,  even  when  the  algorithm  was 

initiated with a population distributed far from the binding site: from 15 to 25 Å RMSD 

from the  experimental  binding  mode  (see  Chapter  2  “Material  and  Methods”).  Then, 

EADock was assessed for its ability to calculate meaningful maps of favorable positions for 

molecular fragments on the surface of the  αVβ3 integrin. For this purpose, maps were 

calculated  for  the  aspartate  and  arginine  side  chain  fragments  using  the  approach 

described in 7.4.1.2, and compared to the actual position of the aspartate and arginine 

side chains of Cilengitide. These two side chains were chosen since they are part of the 

RGD motif of Cilengitide, which is present in nearly all integrin natural ligands and has 

been shown to be important for the interaction with the receptor.  Figure 31 shows the 

RGD motif of Cilengitide bound to the αVβ3 integrin, along with the map calculated for the 

aspartate side chain. As can be seen, the most favorable position for the aspartate side 

chain fragment (acetate) according to the EADock scoring function, which reflects the 

binding affinity  between the fragment  and the protein,  is  nearly  superimposed to the 

actual position of the aspartate side chain of the RGD motif. Similarly, the most favorable 

positions calculated for the arginine side chain fragment make ionic interactions with the 

Asp 150 and 218 of chain α, similarly to the arginine residue of Cilengitide. The sixth most 

favorable position is in fact superimposed to the arginine residue of the inhibitor (see 

Figure 31). These results illustrate the efficiency of EADock for both ligand docking and 

map calculation on the integrin receptor.

7.4.2.3 Design of peptide inhibitors of α5β1.

No structure was available for the  α5β1 integrin. A homology model has been realized 

based on the structure of the αVβ3 integrin bound to the Cilengitide (1L5G in PDB, 52% 

identity),  using  MODELLER.  The  resulting  structure  was  minimized  by  30  steps  of 

steepest descent and 30 steps of Adopted Newton-Raphson, then by 100 steps of steepest 

descent with the GB-MV2 solvent model. Based on the fibronectin sequence and structure 

(1TTG in PDB), we investigated the RGDSP linear pentapeptide as a possible virtual lead 

compound to  initiate  a  cycle  of  sequence optimization.  First,  the  RGDSP peptide was 
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docked on the α5β1 integrin using EADock. Figure 32 shows the most favorable calculated 

binding mode.

As can be seen, the position of the RGD motif of the peptide is very similar to that seen in 

the experimental binding mode of Cilengitide on αVβ3. The arginine residue makes ionic 

interactions with the Asp227 side chain of chain  α, and the aspartate residue with the 

backbones of Asn553 and Tyr462 (chain β) and with an Mg2+  structural ion, respectively. 

Additional  hydrogen  bonds  also  take  place  between the  NH backbone atoms and  the 

hydroxyl  side  chain  function  of  the  peptide  serine  residue  on  the  one  hand,  and  the 

backbone of carbonyl of the integrin Asn553 (chain β) on the other hand. Similarly to the 

N-methylValine residue of Cilengitide, the proline residue does not make any interaction 

with the integrin receptor. The binding mode obtained by EADock was reproducible and 

stable enough to be used as a virtual lead compound for further sequence modifications.
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Figure 31: (A) The RGD motif of Cilengitide is shown in thick lines, colored according to  

the atom type. The rest of the molecule is not represented for the clarity of the figure. The 

surface  of  the  αVβ3  integrin  receptor  is  shown.  Favorable  positions  for  the  acetate 

fragment are shown in green thin lines, except the most favorable one, which is shown in  

transparent ball and stick representation. (B) Same as (A) but for the arginine side chain 

fragment.  The  sixth  most  favorable  position  is  shown  in  transparent  ball  and  stick  

representation.



The RGDSP linear peptide was submitted to a cycle of sequence optimization, following 

the approach described earlier. Several pentapeptide sequences were suggested by the 

approach and were retained for experimental analysis. They are listed in Table 7. 

For example,  Figure 33A shows the map of favorable positions for the tryptophan side 

chain fragment calculated by EADock. The most favorable position, in terms of binding 

free energy, makes several van der Waals interactions with Leu512, Pro515 and Cys516, 

and a hydrogen bond with the Ser518 side chain (chain β). It is well positioned to replace 

the fourth side chain (Ser) of the RGDSP lead compound. This led to the automatic design 
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Table 7: Sequence and IC50 of the peptides experimentally tested on the α5β1 integrin.

Peptide
Cilengitide, i.e. c(RGDf[Met]V)
RGD
RGDSP
RGDLP
RGDFP
RGDWP

IC50 (α5β1)

5.5 μM

650 μM

45 μM

175 μM

17.5 μM

12 μM

Figure 32: Binding mode of RGDSP

  

Asp227

Tyr462

Asn553



of the RGDWP sequence and docking of the corresponding peptide. As can be seen in 

Figure  33B,  the  tryptophan  residue  of  RGDWP,  in  its  calculated  binding  mode,  has  a 

position similar  to  that  displayed by the parent  molecular  fragment that  was used to 

derive this putative compound. This illustrates that the basis of the approach does make 

sense: selecting a molecular fragment displaying numerous favorable interactions with 

the targeted protein and well positioned to be linked to the lead compound actually led to 

a new peptide whose calculated binding mode conserved the positioning of this particular 

side chain, as well as that of the rest of the molecule.

As could be expected from the fact that the proline residue does not make any interaction 

with the targeted protein, no possible sequence modifications was found for this residue. 

On the contrary, several sequence modifications were suggested by the approach for the 

serine residue, including mutations to leucine, phenylalanine and tryptophan. The four 

corresponding  linear  pentapeptides  were synthesized  and tested experimentally,  along 
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Figure 33: (A) The RGDSP peptide docked on the surface of the α5β1 integrin is shown in 

ball and stick representation. The S and P residues are not shown for the clarity of the  

figure. The surface of the  α5β1 integrin receptor is shown. Favorable positions for the 

tryptophan fragment are shown in green thin lines, except the most favorable one, which 

is shown in transparent thick lines. (B) Binding mode calculated by EADock for the linear  

RGDWP peptide.



with the tripeptide RGD that was taken as a reference. As can be seen in Table 7, the RGD 

tripeptide shows a low affinity for the  α5β1 receptor, with an IC50 of only 650  μM. The 

RGDSP, whose sequence was extracted from fibronectin, shows a much better IC50, i.e. 45 

μM. Among the three peptides whose sequence were derived from the in silico approach, 

two display an increased activity compared to that of RGDSP: RGDFP and RGDWP. As 

already reported for αVβ3, the fourth residue shows therefore a preference for aromatic 

side chains. The most active peptide, RGDWP, exhibits an activity very similar to that of 

the cyclic peptide Cilengitide.

7.4.2.4 Conclusion

The FB-RDD procedure used in this study led to the design of several linear pentapeptides 

showing significant experimental affinity for the  α5β1 receptor. The measured activities 

were higher than that of the RGD motif and the RGDSP lead compound, and similar to 

that  of  the well  known Cilengitide cyclic  pentapeptide.  This  study thus illustrates the 

ability  of  this  in  silico approach to design new ligands with increased affinity  for  the 

targeted protein.

The results  are only  a first  preliminary step in  the design of  α5β1 inhibitors.  Further 

rounds of sequence optimization will be performed to potentially increase the affinity of 

these  peptides.  Also,  several  modifications  will  be  intended  to  increase  the  peptide 

resistance to metabolization, such as the introduction of D residues in the sequence, or 

cyclization of the molecule. In addition, the latter could also lead to an increase in affinity 

for  the  protein,  since  it  reduces  drastically  the  conformational  space  of  the  peptide, 

compared to the linear one, and therefore limits the entropic penalty upon complexation. 

As can be seen in Figure 33B, the proximity of the C- and N-termini of the peptide in its 

predicted bioactive conformation suggests that the latter could be conserved during such 

a cyclization.

7.4.3 Design of peptidic PPARα ligands

This  work  was  carried  out  by  Vincent  Zoete,  Lina  Yip-Sondernegger  and  Aurélien 
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Grosdidier, in collaboration with the groups of Liliane Michalik and Walter Wahli (UNIL-

Center for Integrative Genomics). The manuscript is in preparation.

7.4.3.1 Biological context

PPARα is  found in liver,  kidney, heart  and muscle and activates genes responsible for 

maintaining the homeostasis of the fatty acids and lipoprotein metabolism through their 

uptake and oxidation. PPARα is the target of the lipid lowering fibrates.

7.4.3.2 Assessment of EADock

All calculations were done using the X-ray structure of the human PPARα molecule bound 

to  the  GW409544  agonist  (1K7L  in  PDB).  This  ligand  was  removed  prior  to  all 

calculations.

The  ability  of  EADock  to  properly  dock  molecules  within  the  binding  site  of  PPAR 

molecules has been assessed previously  [180].  Also, the ability of EADock to calculate 

reliable maps of favorable positions for small molecular fragments has been tested during 

a  previous  study  aiming  at  designing  peptide  inhibitors  for  integrin  receptors  (see 

previous application).

7.4.3.3 Design of peptide ligands of hPPARα.

Since no large peptide ligand is available for PPARα, the first step of the approach was to 

construct an initial peptide virtual lead compound. The latter is a peptide that has not 

been tested experimentally, thus we don't know whether it is active or not. However, it is 

characterized by the fact that it exhibits a well defined and reproducible binding mode 

according to  in silico approaches, so that it can be used as a first template for further 

sequence optimization. Analysis of all organic synthetic ligands show that they share the 

same structural  property  as  the  natural  ligands:  they  have  a  polar  head (generally  a 

carboxylate function or a thiazolidinedione cycle), responsible for the interactions with the 

polar part of the binding site (Ser280, Tyr314, His440 and Tyr464), and a hydrophobic tail 

making van der Waals interactions with the rest of the binding site, which is itself mainly 
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hydrophobic  [197].  Based  on  this,  we  chose  the  ADAAA  peptide  as  a  virtual  lead 

compound to initiate the sequence optimization. This peptide was docked in the PPARα 

using the EADock program. The estimated binding mode shows that, as expected, the 

aspartate side chain makes a network of four hydrogen bonds with the polar part of the 

binding  site,  while  the  alanine  residues  fill  part  of  the  rest  of  the  hydrophobic  large 

binding site, providing a first positioning of the backbone (see Figure 34).

The virtual lead compound was submitted to two rounds of sequence optimization. No 

interesting substitution was found for the N-terminal alanine residue. According to the 

FB-RDD, the aspartate residue in position 2 could be replaced by a glutamate side chain, 

while a mutation of the alanine in position 3 to serine was suggested for its ability to make 

an additional hydrogen bond with the Ser280 side chain. Little room is present around the 
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Figure 34: Calculated binding mode of the virtual lead compound ADAAA. The carboxylate  

function  of  the  Asp  residue  makes  a  hydrogen  bonds  network  with  Ser280,  Tyr314,  

His440 and Tyr464.

  

His440
Ser280

Tyr464 Tyr314



alanine in position 4, and consequently, no mutation was suggested by the approach for 

this  residue.  Finally,  it  was  suggested  that  a  mutation  of  the  C-terminal  alanine  to 

tryptophan could take place.  As  can be seen in  Figure  35,  a  favorable  position  for  a 

tryptophan  side  chain  fragment  is  situated  adequately  to  be  linked  to  the  C-terminal 

residue and makes favorable van der Waals interactions with the surrounding hydrophobic 

residues (Cys275, Val332 and Ala333), as well as a possible orthogonal  π-  π  interaction 

with the Tyr334 side chain (T-stacking).

Several  peptides  were retained for  experimental  analysis,  i.e.  ADAAA (as a  reference, 

Figure 34), AESAW, ADSAW, ESAW (its binding mode is shown in  Figure 36) and Fmoc-

ESAW. ADAAA was found to be inactive experimentally.

This result is however interesting, because it shows that a virtual lead compound does not 

require a detectable activity to be used for sequence optimization, as long as it exhibits a 
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Figure  35: (A) The calculated binding mode of the AESAA peptide is shown in ball and 

stick representation. The N- and C-terminal residues are not given for the clarity of the  

figure. The favorable positions of the tryptophan side chain fragment are shown in green  

thin lines, except the one that was found by the reconnection procedure to be a putative 

side chain for the C-terminal residue. (B) Calculated binding mode for the ESAW peptide.  

The actual position of the Trp side chain is colored in green.

  
Cys275

Tyr334Val332

Ala333



well defined in silico binding mode. Preliminary results showed that AESAW does have a 

limited but detectable activity, while ESAW exhibits a low micromolar activity, similar to 

that of the well established PPARα organic ligand Wy 14,643. These first results are very 

encouraging in view of the absence of experimental lead compound, and of the fact that 

this sequence was derived using only in silico approaches. This highlights the efficiency of 

our in silico FB-RDD approach.

7.4.3.4 Conclusion

The FB-RDD procedure used in this study led to the design of several linear tetrapeptides 

and pentapeptides, some of them showing significant  experimental  affinity against  the 

PPARα. The measured activity of the ESAW tetrapeptide is similar to that of Wy14,643, a 

well established organic ligand of PPARα. This study thus illustrates the ability of this in 

silico approach to design new ligand with high affinity for the targeted protein.

Further rounds of sequence optimization will  be performed to potentially  increase the 

affinity  of  these  peptides  for  PPARα.  Also,  several  modifications  will  be  intended  to 

increase the peptide resistance to metabolization, such as the introduction of D residues 
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Figure  36:  (A)  The calculated binding mode for  the ESAW peptide (ball  and stick) in  

PPARα. The protein surface is clipped to show the space filling of the binding site realized  

by the peptide. (B) Hydrogen bonds network between the glutamate side chain of ESAW  

and Ser280, Tyr314, His440 and Tyr464.

  

His440

Tyr464

Tyr314 Ser280



in the sequence. 

7.4.4 Targeting the indoleamine deoxygenase

This work is being carried out by Üte Röhrig, Vincent Zoete and Aurélien Grosdidier. The 

manuscript is in preparation.

7.4.4.1 Biological context

The  heme-containing  enzyme  indoleamine  2,3-dioxygenase  (IDO,  EC  1.13.11.52)  has 

recently  been  implicated  in  the  establishment  of  pathological  immune  tolerance  by 

tumors. IDO catalyzes the initial and rate-limiting step in the catabolism of tryptophan 

(Trp) along the kynurenine pathway (see Figure 37) [229].
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Figure 37: IDO catalytic cycle. In the first step of the catalytic cycle, IDO binds both the  

substrate  and  molecular  oxygen  in  the  distal  heme  site.  The  enzyme  catalyzes  the 

cleavage  of  the  pyrrole  ring  of  the  substrate  and incorporates both  oxygen atoms.  It  

releases N-formyl kynurenine, which is subsequently hydrolyzed to kynurenine.



By  depleting  Trp  locally,  IDO  blocks  the  proliferation  of  T  lymphocytes,  which  are 

extremely  sensitive  to  Trp  shortage  [230].  The  observation  that  many  human tumors 

constitutively express IDO introduced the hypothesis that its inhibition could enhance the 

effectiveness of cancer immunotherapy. In fact, results from in vitro and  in vivo studies 

suggest that the efficacy of therapeutic vaccination of cancer patients might be improved 

by concomitant administration of an IDO inhibitor [231]. Up to date, the best known IDO 

inhibitors display affinities in the micromolar range (see Table 8).

Both  competitive  and  noncompetitive  inhibitors  have  been  identified,  the  latter  being 
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Table 8: IDO inhibitors

Inhibitor Stereochemistry K [μM] Reference
4-Phenyl-Imidazole (PIM) 8 [Sono1989 ]
1-Methyl-Trp (1MT) L 34 [Peterson1994]
1-Methyl-Trp (1MT) L,D 34.2 [Muller2005]
MTH-Trp (MTH) L,D 11.6 [Muller2005]
Trp (Trp) L,L 147 [Peterson1994]
4-F,7-F-Trp (47FF) L 40 [Sono1996]
5-F,7-F-Trp (57FF) L 24 [Sono1996]
7-F-Trp (7F ) L 37 [Sono1996]
3-benzofuranyl-Trp (OIN) L,D 25 [Cady1991]
3-benzothienyl-Trp (SIN) L,D 70 [Cady1991]
2,5-Dihydro-Phe (DHP) L 230 [Watanabe1978]
BR1 97.7 [Gaspari2006]
BR2 82.5 [Gaspari2006]
BR3 41 [Gaspari2006]
BR4 34 [Gaspari2006]
BR5 42.1 [Gaspari2006]
BR6 179.6 [Gaspari2006]
BR7 47.6 [Gaspari2006]
BR8 72.4 [Gaspari2006]
BR9 62.4 [Gaspari2006]
BR10 149.4 [Gaspari2006]
BR11 1267 [Gaspari2006]
BR12 37 [Gaspari2006]
BR13 13.2 [Gaspari2006]
BR14 363.6 [Gaspari2006]
BR15 17.2 [Gaspari2006]
BR16 11.6 [Gaspari2006]
BR17 28.4 [Gaspari2006]
BR18 20.5 [Gaspari2006]
BR19 NI [Gaspari2006]
BR20 342.3 [Gaspari2006]
BR21 NI [Gaspari2006]
BR22 202 [Gaspari2006]
BR23 1292 [Gaspari2006]
BR24 328.7 [Gaspari2006]



mostly  β-carboline derivatives  [232]. Competitive inhibitors are mainly derived from Trp 

or from the natural compound brassinin, many of them incorporating an indole ring. In in 

vivo studies, mainly the Trp analog 1-methyl-Trp (1MT) has been used (K = 34 μM) so far.

The recently resolved crystal structure of human IDO [233] can serve as a scaffold for the 

design of new IDO inhibitors. To this aim, we focus first on elucidating the binding modes 

and  affinities  of  all  competitive  inhibitors,  where  a  binding  constant  value  has  been 

experimentally measured (Table 8,  Figure 38). Those include Trp derivatives with indole 

ring substitutions (1MT, 47FF, 57FF, 7F), Trp derivatives with indole ring modifications 

(SIN, OIN, DHP), Trp derivatives with side chain modifications (MTH), TRP2,  brassinin 

derivatives (BR1-BR24), and PIM. The second goal of  this study is to propose rational 

modifications of these compounds according to the FB-RDD pipeline described above.
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7.4.4.2 Modeling approach

In the X-ray structure, PIM is bound in a deep binding site, with its phenyl ring inside a 

large hydrophobic pocket (Pocket A, Figure 39). The imidazole nitrogen is coordinated to 

the heme iron with a distance of  2.1 Å.  The PIM binding site is  made up of  residues 

Tyr126, Cys129, Val130, Phe163, Phe164, Ser167, Leu234, Gly262, Ser263, Ala264, and 

the  heme ring.  Possible  hydrogen-bonding  sites  are the SH group of  Cys129,  the  OH 

group of Ser167, the backbone CO group of Gly262, the backbone NH group of Ala164, 

and  the  heme  7-propionate  group.  Larger  ligands  than  PIM  may  also  interact  with 

Phe226, Arg231, Ser235, Phe291, Ile354, and Leu384, which are located at the binding 

site entrance. Here, additional hydrogen bonds are possible with the sidechain of Arg231. 

A hydrophobic  pocket in this  region is  provided by Phe163,  Phe226,  Arg231,  Leu234, 
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Figure 38: All docked inhibitors



Ile354, and the heme ring (Pocket B, Figure 39).

7.4.4.3 Results

7.4.4.3.1 Docking of frameworks

7.4.4.3.1.1 Docking of the co-crystallized inhibitors

As a first assessment of the ability of EADock to identify relevant ligand binding modes in 

IDO, we docked 4-phenylimidazole (PIM), which has been co-crystallized in one of the 

resolved crystal structures (2D0T). The best docking solutions are very close to the crystal 

structure (ligand heavy atom RMSD 0.7 Å, Figure 39). The distance between the imidazole 

nitrogen and the iron is somewhat larger (2.8 Å) than in the X-ray structure (2.1 Å). This is 

expected as our empirical force field neglects any covalent contribution to the Fe-N bond. 

PIM does not form any hydrogen bond with the protein. Its NH group is pointing towards 

the  solvent.  The  result  demonstrates  that  EADock  is  capable  of  identifying  the  most 

favorable binding site in agreement with experimental data.
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Figure  39:  a.  Crystal  structure  of  IDO:  Binding  site  with  bound  PIM  ligand.  Two 

hydrophobic pockets and some important residues are labeled. The surface is colored by 

its electrostatic potential (red=negative, blue=positive). b. Superposition of PIM crystal  

structure (magenta) and best predicted PIM structure.



7.4.4.3.1.2 Docking of the substrate tryptophan

Human IDO degrades both D and L-Trp. In order to explore the complex formed between 

Trp and the enzyme, we docked both isomers. Studies were carried out in absence of O.

For L-Trp, an energetically favorable binding mode is found inside the binding site, with 

the  indole  nitrogen  pointing  towards  the  heme  iron,  the  phenyl  ring  filling  the 

hydrophobic  pocket,  and  the  α-amino  group  forming  a  salt  bridge  with  the  heme  7-

propionate (Figure 40).

A similar binding mode is found for D-Trp, but a difference consists in the location of the 

indole NH group, which points further away from the heme iron and forms an additional 

hydrogen bond with the sidechain of Ser167 (Figure 40). Despite this additional favorable 

interaction, the energy of this pose is about 5 kcal/mol higher than that for L-Trp.

It is conceivable that a binding mode similar to the ones found here could be possible also 

in the presence of oxygen, which would allow for the proposed catalytic cycle  [233] to 

take  place.  While  the  proposed  binding  mode  displays  many  favorable  interactions 

between  the  receptor  and  the  ligand,  the  Trp  carboxylate  group  is  located  in  a 

hydrophobic  environment.  However,  preliminary  results  from  a  molecular  dynamics 

simulation of Trp-bound IDO in explicit water show that the positively charged sidechain 

of  Arg231  can  move  to  a  position  where  it  forms  a  direct  hydrogen  bond  with  the 
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Figure 40: Binding mode of Trp. a. L-Trp. b. D-Trp.



carboxylate group of the Trp ligand.

Docking of other known inhibitors

7.4.4.3.1.2.1 Docking of tryptophan derivatives

For most Trp derivatives, we find a conserved binding mode similar to the binding mode of 

Trp (Figure 41).

While the plane of the indole ring is very similar in all ligands and roughly perpendicular 

to the heme plane, the “tilt” of the indole ring and its distance with respect to the heme 

plane shows some variation.  This  flexibility  might  be connected to the poor substrate 

specificity of IDO. The positively charged α-amino group is always hydrogen bonded to the 

heme propionate and additionally sometimes to the backbone oxygen of Gly262. The L 

isomers of the oxygen and of the sulfur analogues of Trp (OIN, SIN) bind exactly in the 
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Figure 41: Docked other known inhibitors.



same  position  as  the  parent  compound,  while  the  D  isomers  seem to  be  less  easily 

accommodated within the binding site – here, all ligands are found to dock outside of the 

binding site.

Trp2 binds  with  the  first  Trp  inside  the  binding  site  ,  while  the  second  Trp  displays 

hydrogen bonds with the heme propionate and the sidechain of Arg231.

The most commonly used IDO inhibitor in cellular and in in vivo assays is 1MT. We find a 

favorable docking mode for both isomers of 1MT inside the binding site, similar to the 

binding  mode  of  Trp.  The  indole  ring  is  pushed  further  away  from the  heme by  the 

presence of the methyl group.

7.4.4.3.1.2.2 Docking of brassinin derivatives

We  docked  all  24  experimentally  investigated  brassinin  derivatives.  Except  for  one 

compound (BR6), we obtain a very conserved binding mode for all ligands (Figure 42), 

suggesting that the rigid pocket approximation is quite appropriate.

In the parent compound (BR1), the indole ring binds in a similar fashion than in D-Trp. 

The NH group of the dithiocarbamate hydrogen bonds to the backbone oxygen of Gly262. 

Most other compounds follow this mode, with optional hydrogen bonds of the indole NH 

group to Ser167 and of the dithiocarbamate NH group to the heme propionate.

In analogy to Trp, the brassinin compounds do not bind directly to the heme iron. The low 

affinity of BR11 can be explained by the fact that the hydrogen bond to heme propionate 

is eliminated by the presence of the aminomethyl group. In BR13 and BR15, two of the 

most active inhibitors, the additional phenyl ring interacts mainly with the sidechain of 

Arg231, possibly forming some cation-π interaction. In BR23 and BR24 the thiazole ring 

can neither interact favorably with the heme propionate group nor with the backbone 

oxygen of Gly262 because it does not include a polar hydrogen atom, thus explaining the 

low affinity of these ligands. However, from the obtained geometries it is not obvious why 

BR20 has a low affinity.
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For all compounds, the sulfur atoms of the dithiocarbamate group are located in a highly 

hydrophobic and polarizable side pocket of the binding site (Pocket B,  Figure 39). This 

environment seems to be well suited to accommodate the large, polarizable sulfur atoms.

Compounds, where one or two of the sulfur atoms are replaced by nitrogen or oxygen 

(BR19-BR22), do not generally dock in the same position as their sulfur counterparts. 

Therefore, it is difficult to determine what exactly is the effect of the substitution. We are 

currently working on developing a QSAR model that can explain the different activities of 

these  compounds.  In  BR6,  at  variance  with  all  other  compounds,  the  indole  ring  is 

replaced  by  a  highly  non-planar  ring  system,  which  cannot  be  accommodated  in  the 

binding site of the crystal structure. However, since BR6 shows a similar activity to some 

planar compounds, it might be assumed that the binding site is able to adapt also to this 

compound.
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Figure 42: Docked brassinin derivatives



7.4.4.4 Design of new inhibitors

Despite the challenging interaction of the compounds with the iron of the heme, relevant 

binding modes were observed. They can be combined with fragment maps generated by 

EADock (see above).

7.4.4.5 Conclusion

The results from the docking of PIM into the IDO binding site suggests that our docking 

algorithm is capable of finding and correctly ranking the conformation of IDO ligands 

despite the difficulties stemming from the presence of a transition metal in the active site. 

We are now addressing this issue by using an extra potential to the two scoring functions 

of EADock in order to obtain a better description of the interactions with the iron atom 

(see Chapter 4 “Perspectives”).

Docking of different ligands into the IDO binding site shows that the latter is large enough 

and able to accommodate both L and D isomers of Trp and its derivatives, in agreement 

with experimental data. The fact that all known IDO inhibitors (except for one compound) 

can be docked inside the active site of the 2D0T X-ray structure illustrates that induced fit 

does probably not play a major role in the binding process. However, e.g. in case of Trp, 

we would expect a sidechain movement of Arg231 in order to optimally bind the ligand. 

We  will  investigate  this  point  further  by  using  a  flexible  protein  during  the  docking 

procedure.

Based on the observed geometries of the bound ligands, we conclude that a good ligand 

should display some or all of the features summarized by the pharmacophore in Figure 41. 

A QSAR model, which will serve for rationalizing the observed activities and for predicting 

the activities of new ligands, is currently under development.
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Figure  43:  Suggestion  for  a  pharmacophore:  (i)  a  large  hydrophobic  fragment  to  fill  

pocket A in the binding site; (ii) an atom that can coordinate to the heme iron such as 

oxygen, nitrogen, sulfur (even if not necessary for binding, see e.g. the case for Trp, this 

should  increase  the  affinity);  (iii)  a  positively  charged  aminogroup  that  can  form  a 

saltbridge with the heme 7-propionate; (iv) a negatively charged group that can form a 

saltbridge with Arg231; (v) a hydrophobic group that can form van der Waals interactions  

with pocket B; and (v) groups that can hydrogen bond to Ser167 and to Gly262.
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8 Perspectives

In a prospective way, this chapter gives some insights about several aspects that could 

significantly improve both the performance and the usability of our docking approach. 

Interestingly, the two most cited programs to date (AutoDock and GOLD) are evolutionary 

algorithms,  illustrating  their  ability  to  provide  an  appropriate  way  of  implementing 

separately the sampling heuristic used to generate poses and the scoring function used to 

rank them. The research around evolutionary computation is a very active field with major 

improvements being reported  [234]. This theoretical flexibility can be combined by the 

practical flexibility resulting from the use of up to date software development techniques 

such  as  object-oriented  design.  The  resulting  software  inherently  allows  a  convenient 

bridge to be established between research-grade and production-grade softwares.  The 

former should be a toolbox allowing an easy investigation and complete reorganization of 

the  methodological  basements  of  the  algorithm.  This  usually  comes  at  the  price  of 

usability,  with  several  and  somewhat  confusing  options  and  features  made  available, 

together with the unavoidable corresponding software flaws. On the contrary, production-

grade software must be stable, reliable, easy to use and efficient. This comes at the price 

of a reduction of the number of features, keeping only the most efficient and useful ones.

Thanks to the use of an object oriented language and of an up to date and rapidly evolving 

modeling engine, EADock is designed to fulfill both requirements, leaving the room for the 

usual  bug  fixes  and  progressive  methodological  refinements  as  well  as  for  big 

methodological jumps that are believed to be required to improve docking accuracy [65].

Several of these improvements are described in this chapter. Some of them are already 

implemented but not tested, others are to be implemented in the coming months. The first 

category of improvements addresses the performance issues noticed during the validation 

(see Chapter 2 “Material  and Methods”),  regarding both the scoring function and the 

sampling heuristic. The second category addresses the usability of the software.
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8.1 Improvements

8.1.1 Performance improvement

8.1.1.1 Scoring

8.1.1.1.1 Challenges

As  stated  by  [77] “Today’s  understanding  of  the  physical  chemistry  of  molecular 

recognition may prove to be incomplete. Specific issues likely to be of continuing interest 

include  changes  in  ligand,  protein,  and  solvent  entropy  upon  binding;  the  suspicious 

tendency  of  many  binding  models  to  yield  affinities  that  correlate  strongly  with  the 

molecular weight of the ligand; electronic polarization; the modeling of metal-containing 

binding sites; and the thermodynamic implications of water binding sites at the ligand-

protein interface.”

As mentioned in the Chapter 1 “Introduction” and reflected by our benchmark, no ideal 

scoring function has been found yet. Several general trends can be identified, and will be 

investigated using EADock.

8.1.1.1.2 A need for decoys

The development of scoring functions may become tedious if a large number of different 

and a priori equally interesting ideas are formulated. The evaluation of the corresponding 

scoring functions must be performed and take into account its ability to impulse a driving 

force  and  to  discriminate  between  the  right  solution  and  a  set  of  decoys.  Such 

requirements are often incompatible, as the former implies a focus on the general trend 

while the latter requires a careful inspection of small variations. An interesting discussion 

about this problem focusing on the way the van der Waals interactions are taken into 

account can be found in [40].

A convenient way to optimize a scoring function regarding to both needs is to use decoys. 

Its  ability  to  drive  the  search  can  be  trained  and  estimated  by  using  rough  decoys. 
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Conversely, highly refined decoys can be used to train and estimate the ability of a scoring 

function to recognize the right solution.

One of the databases mentioned in the Chapter 1 “Introduction”, the LPDB, provides both 

rough and refined decoys for each test complex, and is well adapted to CHARMM as the 

corresponding PSF and CRD files are available. We are planning to use it to test the ability 

of  new scoring functions to drive the search.  To assess the selectivity of  new scoring 

functions, highly refined decoys will also be generated by EADock.

8.1.1.1.3 Refine the scoring

Once a clear benchmark has been set up, several ideas are worth investigating. The first 

is an extension of the current scoring function of EADock to be able to deal with ligands 

that  may  bind  covalently  to  their  receptor.  The  second is  to  account  for  the  entropy 

contribution to the binding free energy. The third is the use of polarizable force field. The 

forth  approach  could  be  used  to  merge  the  current  scoring  strategy with  a  QSAR 

relationship  when  several  compounds  with  known  activities  are  docked  on  the  same 

receptor.

User defined extra potential

CHARMM gives  the  opportunity  for  the  user  to  define  its  own distance  restraints.  A 

combination of two such potentials can be fitted on quantum calculations to mimic the 

formation  of  a  covalent  bond  between  the  ligand  and  its  receptor  (Figure  44).  Such 

potential can be added to both fitness functions of EADock, allowing the docking of ligand 

interacting with metalloenzymes, such as the iron of the heme group of the IDO enzyme 

(see Chapter 3 “Applications”). This was implemented in EADock and is currently being 

tested. Preliminary results  showed a better agreement between the predicted and the 

experimental binding modes (Figure 45).
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Figure 44: Example potential that can mimic the formation of a covalent bond. See text 

for details.

Figure  45: (A) Docking of the phenylimidazole (PIM) with an extra potential mimicking 

the formation of a covalent bound. The predicted binding mode is shown in transparent  

orange, the atoms of the ligand in the native binding mode are colored according to their 

type. The distance between PIM and the iron is 2 Å, and the RMSD to the native binding 

mode is 0.5 Å. (B) Docking of PIM without the extra potential. The distance between PIM 

and iron is 2.8 Å. Although the RMSD to the native binding mode is 0.85 Å, this binding mode 

is visually less convincing.
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Iterative integration with QSAR or LIE/LIECE approach

When a set of compounds with known activities has been docked on the same target, they 

can be used to generate an initial QSAR model [235] or optimize the α and β parameters 

of a rapid scoring functions like LIECE  [236].  Such models can be combined with the 

scoring function of EADock to drive the search more efficiently. Other compounds can 

then be docked more accurately, and the corresponding binding modes can be used to 

iteratively  refine  the  scoring  model.  Such  an  iterative  approach  might  be  worth 

investigating for the design of active compounds (see Chapter 3 “Applications”).

8.1.1.2 Sampling

As mentioned in  [63] and explained in Chapter 1 “Introduction”,  the objective function 

must be consistent with the sampling heuristic, and vice versa. A scoring function aiming 

at being very accurate cannot be combined with a rough sampling heuristic. Although the 

performance of EADock (as published in [70]) is good regarding to its sampling, we have 

several ideas to improve it.  Three directions are currently being explored: the rational 

reduction of the search space, a more realistic description of molecular interactions, and a 

better efficiency of the evolutionary process itself.

8.1.1.2.1 Search space reduction

The search space can be reduced and its exploration made easier by several tricks. First, 

when generated, if ligand poses are not close enough to the receptor, the former should 

be attracted by the cavities of the latter. Second, the split of the ligand into flexible and 

rigid parts would be a convenient way to describe at the same time highly flexible ligands 

(such  as  peptides)  and  rigid  ligands  (such  as  cyclic  molecules),  simplifying  the 

corresponding  search  space.  Third,  the  refinement  of  dihedral  angles  should  not  be 

random but biased toward the most likely conformations [237]. Fourth, the list of binding 

modes that are blacklisted should be periodically reevaluated and cleaned up to define a 

smarter constraint on the sampling heuristic.
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Attracting cavities

Several problematic binding modes with a very limited contact between the ligand and the 

receptor  were  generated  and  observed  during  the  validation  of  EADock  and  some 

applications described in the previous chapters. Although these binding modes are likely 

to  be  removed  from  the  evolution  because  of  their  poor  FullFitness,  the  current 

SmartAttractor  procedure  (see  Chapter 2  “Material  and  Methods”)  can  probably  be 

improved by attracting a remote ligand into protein cavities rather than to the closest part 

of the surface. Such cavities can be identified prior to the docking, by our own permissive 

variant of the PocketFinder algorithm  [238], which is based on a grid (see  Figure 46). 
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Figure 46: cavities detected on the penicillopepsin/1apt test case, grid points are shown 

in red.



Depending  on  its  accessibility,  each  point  of  the  grid  can  be  assigned  a  mean  field 

potential attracting the heavy atoms of the ligand.

Then, if the sampling heuristic generates a binding mode in which the distance criteria 

between the ligand and the receptor is not met (see Chapter 2 “Material and Methods”), 

the potentials assigned to the closest grid points are used to attract the ligand in the 

corresponding cavity by 500 steps of ABNR minimization. To make the path to the cavity 

easier to follow for the ligand, it is made softer (see the SoftLigand operator in Material 

and Methods).  The system is then relaxed in the unbiased force field by 500 steps of 

ABNR  minimization.  This  approach  is  implemented  in  EADock  and  currently  being 

assessed.

The sampling bias toward cavities can be finely tuned by tweaking the maximum distance 

criteria  allowed between the ligand and the receptor,  the number of attracting points 

taken into account, and by the potentials themselves. Such an approach is believed to be 

less restrictive than the docking of the ligand inside a binding pocket identified prior to 

the docking (see Chapter 1 “Introduction”).  This  latter approach allows an impressive 

reduction of the ROI but will  fail  if  the binding pocket is  not identified correctly.  The 

method we propose here does not significantly slow down a docking run, and is likely to 

be more robust because it only adds a tunable bias to the sampling.

Adaptation to the complexity of the ligand

Another way to limit the search space comes from the observation that while some ligands 

such  as  peptides  are  highly  flexible,  some  are  very  rigid.  For  instance,  most  drug 

frameworks are made of one or several aromatic cycles. The conformational space of such 

ligands could be reduced by limiting the conformational exploration to their flexible parts, 

as their rigid parts are very unlikely to be distorted in a low-energy binding mode.

Rotamer libraries

The current exploration of the dihedral angle space is performed by a discrete sampling of 

conformations generated by 60 degrees rotations. Such a rough exploration guarantees 
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that the dihedral space is more or less uniformly explored. However, this is not satisfying 

since some conformations are known to be more favorable than others [239]. Instead of a 

fixed step of 60 degrees, the sampling of dihedral angles should be biased toward these 

most favorable values.

Such an approach was recently successfully validated [237] for proteins, and can be easily 

implemented by considering existing rotamer libraries. A similar sampling bias could also 

be introduced for organic ligands. It could either be defined manually, or derived from MD 

simulations prior to the docking.

Blacklisted conformations

The search space would be described more efficiently if  the list of blacklisted binding 

modes was cleaned up regularly to filter out its redundancy.

8.1.1.2.2 More realistic description of the interaction

The  rationalization  of  the  search  space  that  would  be  allowed  by  the  improvements 

described above can either lead to shorter run times, or it can be reinvested to open a way 

toward a better description of the molecular interaction taking place between the ligand 

and the receptor.

Conformational change of the receptor

The first obvious step in this direction would be to take the flexibility of the receptor into 

account. A convenient way to do this implicitly is to use softened van der Waals potentials. 

This drives the search efficiently, but it comes at the price of selectivity  [40]. This issue 

can be addressed by starting the docking procedure using a softening of the potential, 

which is progressively decreased, keeping both the efficiency and the selectivity of these 

interactions [40]. Such a trick can be combined with the exploration of the conformational 

space of the receptor, either by explicitly modifying the position of a group of atoms, or by 

allowing  a  passive  induced  fit  by  minimization.  Such  approaches  are  implemented  in 

EADock,  but  not  critically  assessed yet  even though it  already  led to  very  successful 
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results, as described in the previous chapter.

Free water molecules

The  interaction  between  a  ligand  and  its  receptor  may  involve  water  molecules 

participating  in  a  network  of  hydrogen  bonds  stabilizing  the  complex.  Such  water 

mediated interactions were found in the thermolysin family of our test set (see Chapter 2 

“Material and Methods”).  Although the complex was stabilized enough by the GB-MV2 

implicit  solvation model  used in the FullFitness,  such a statistical  description can not 

reproduce  the  interactions  made  by  key  water  molecules.  The  introduction  of  water 

molecules,  explicitly  moved  during  the  docking,  might  help  docking  correctly  more 

difficult test cases.

8.1.1.2.3 Evolution should never rest

All along the evolution, the population of binding modes is clustered many times. This 

clustering allows the identification of local  minima and the coupling between the two 

fitness functions, and impacts directly the management of the diversity  (see Chapter 2 

“Introduction”).

Despite  its  critical  role,  the clustering algorithm used in  [70] heavily  depends  on the 

ranking of the binding modes in the population. This obvious lack of reliability is a major 

concern  for  future  evolutions.  It  could  be  replaced  by  an  UPGMA-like  clustering 

algorithm, as follows. The clustering of the two closest elements of the distance matrix 

between binding modes is done first, instead of taking them according to their order in 

the population. Second, the center of a cluster is not defined by its rank in the population 

to cluster. Instead, the binding mode with the lowest RMSD to the others within the same 

cluster is chosen as the center. This is likely to lead to a more reliable identification of 

local minima.

The  FullFitness  distribution  of  the  elements  within  two  distinct  clusters  may  partly 

overlap. However, with the implementation published in  [70], one of the two compared 

clusters will  be discarded and its center will  be blacklisted anyway. The fate of these 
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clusters can thus be very different despite very similar FullFitness, and the wrong one 

might be blacklisted because it  has not been refined enough compared to the others. 

While this mechanism is a key feature of EADock, the probability of such a mistake can be 

evaluated  by  comparing  the  FullFitness  distribution  of  the  two  clusters  with  a  non-

parametric  Wilcoxon  statistical  test.  Depending  on  the  statistical  significance  of  the 

energy  difference,  the  cluster  with  the  less  favorable  FullFitness  may  be  saved  or 

discarded.  This  rational  statistical  assessment,  together  with  the  clustering  algorithm 

described  above,  was  implemented  in  EADock,  but  the  corresponding  expected 

performance improvement was not assessed yet.

Another potentially interesting option would be to cluster the population according to the 

RMSD and to the SimpleFitness or FullFitness. Such a two-way clustering could perform 

even better by identifying large unfavorable regions of the search space,  for instance 

corresponding to positions of a ligand floating around a charged sidechain of the receptor 

but  not making additional  interactions with it.  Conversely,  favorable  regions would be 

more carefully inspected for energetic details.  Unfortunately,  the number of clustering 

happening during the evolution is huge (typically more than 10000), and the speed of the 

clustering  algorithm  may  have  a  major  impact  on  the  docking  speed  and  may  be 

problematic  from  a  software  optimization  point  of  view.  Nevertheless,  such  two-way 

clustering is now under investigation.

Complementary to the safer ranking of more reliably identified local minima, the yield and 

robustness of the evolutionary process itself can be improved when facing a broad and 

more  complex  energy  landscape.  Once  enough  local  minima  are  identified,  newly 

generated binding modes are likely to be the one eliminated between generations. This 

lead  to  a  stable  population  over  several  generations.  Once  a  disruption  happens,  for 

instance coming from the blacklisting procedure, the identified local minima massively 

disappear and a significant part of the population is renewed (see Figure 47).
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Figure 47: Left evolution of clusters ranking as a function of the generation. Segments are 

used to join the positions of a given cluster along the docking process. Green: binding  

modes < 2 Å RMSD to the experimental structure, gray: discarded solutions, blue: new 

solutions,  pink:  solutions  above  2 Å RMSD  (the  closer  from  2 Å,  the  lighter).  Right,  

overview  of  a  more  realistic  evolution:  green:  binding  modes  <  2 Å RMSD  to  the 

experimental structure, gray: discarded solutions, pink: solutions above 2 Å RMSD (the 

closer  from  2 Å,  the  lighter).  Relatively  stable  populations  can  be  seen  between 

generations 6 and 15, or 23 to 33, separated by mass extinction happening for instance at  

generation 16 or 40.
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While  a  stabilization  of  the  population  during  several  generations  may  indicate  a 

convergence of the evolutionary process, the corresponding generations are useless until 

another interesting region of the search space is identified or refined. Such identification 

or refinement implies that a sufficient number of binding modes in the population are 

available from an evolutionary point of view to carry out the sampling.

A convenient  way to  challenge  a  stable  population  without  using  a  sharp  blacklisting 

would  be  to  temporary  overweight  one  or  several  energetic  terms  in  the  two  fitness 

functions, such as the van der Waals interaction energy, self energy of the ligand, the 

electrostatic interaction energy, or surface buried upon binding. The resulting disruption 

would result in the elimination of clusters having a reasonable overall FullFitness coming 

from  compensated  yet  highly  suspicious  unfavorable  interactions.  Interestingly,  the 

overweighting  of  van  der  Waals  interactions  would  select  the  clusters  with  the  most 

favorable ligand efficiency [98] (see Chapter 1 “introduction”).

The different criteria and the corresponding threshold could certainly be prioritized by 

looking  at  decoys  in  a  database  such  as  the  LPDB  (see  Chapter  1  “introduction”). 

Alternatively,  the  most  disruptive  energy  term and  its  ideal  threshold  value  could  be 

identified from the evolving population of binding mode itself.

8.1.2 Usability

During the past  years,  EADock has been used as a docking toolbox,  able to test  and 

validate new ideas trying to reach an interesting performance level. As described above 

this  process  will  goes  on  in  the  future.  On  the  other  side,  what  makes  a  software 

interesting is its ability to go successfully from the world of benchmarks to real world 

applications. Such a transition requires a favorable balance between the performance of 

the program and its usability. As discussed above, the former can be improved by several 

means. This is also the case for the latter, by improving the input, the output, and the 

speed of EADock.
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8.1.2.1 Input

A first step toward a better usability is to limit the amount of information that EADock has 

to feed with, and by using a comprehensive user interface.

8.1.2.1.1 Smarter user input

Both docking-specific and evolutionary parameters should be at least suggested, if not 

completely automated. The former include the definition of the rotatable dihedral angles, 

symmetries, an easy management of tautomeric states, and an integration with already-

existing scripts to generate PSF and CRD files from PDB files easily

An automatic determination of reasonable evolutionary parameters would allow a better 

management of docking jobs. Such an automatic determination routine could take into 

account the size of the ROI, the number of putative binding pockets of the protein (for 

instance depending on its accessible surface and number of identified binding pockets, 

see above), and the number of different conformations accessible for the ligand (which 

depends on the type and number of the corresponding degrees of freedom).

To avoid a tedious resubmission of jobs that crashed or had been stopped, restart files will 

have to be generated.

8.1.2.1.2 Better user interface

While  the command line is  probably  the most  suitable  interface for  intensive  docking 

studies  running  on  clusters,  end  users  might  also  be  interested  in  more  friendly 

interfaces.

8.1.2.1.2.1 Graphical user interface

As EADock itself is implemented in Java, the implementation of a Java-based graphical 

user  interface  would  be  straightforward,  but  would  require  a  significant  software 

development.

Alternatively, existing programs such as UCSF Chimera can be extended by plug-ins. The 

EADock: design of a new molecular docking algorithm and some of its applications. 147/183



integration of the docking software DOCK into Chimera is  already on its way5,  and a 

similar plug-in could be rapidly developed for EADock.

8.1.2.1.2.2 Web service

During the last years, the biological community has been getting used to web-services for 

common bioinformatics tasks. Such an interface for EADock would allow researchers to 

submit their docking jobs easily (Figure 48), while the docking itself would be running on 

a  dedicated  back-end  cluster  (Figure  52).  Such  a  web  service  is  currently  being 

developed.

5 http://www.cgl.ucsf.edu/chimera/docs/ContributedSoftware/dockprep/dockprep.html
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Figure 48: Prototype of a web service for EADock.



8.1.2.2 Speed

Compared to typical run times reported for other docking softwares (hours for EADock vs 

minutes for VS dedicated softwares), the docking accuracy of EADock comes at the price 

of speed. However, due to the need for human expertise when designing new drugs  in 

silico, the docking itself is not necessarily a bottleneck. Nonetheless, the faster EADock, 

the better the user experience. Profiling results showed that depending on the size of the 

system, the CPU time used by CHARMM ranges from 95% to 99% of the total docking run.

Optimizing the Java code thus appears to be useless, leaving us with two options: either 

CHARMM itself should be accelerated, or the algorithm itself should be tweaked.

8.1.2.2.1 CHARMM optimization

The compilation of CHARMM was found to have a deep impact on its speed, especially for 

some hardware architectures (IA64, PPC). For common platform (x86, AMD64), the GNU 

compiler, was found to perform much better although it is still significantly slower than 

proprietary compilers such as ICC. Choosing an optimal compiler is the first and easy way 

to accelerate CHARMM.

CHARMM was not  developed with high performance computing in  mind,  but  physical 

relevance and accuracy. The code readability was thus favored against raw performance. 

There  is  certainly  room for  improvement  in  the  routines  called  by EADock,  and such 

optimizations are currently being carried out in the SIB. Although very efficient,  such 

optimizations should be implemented very carefully as they often lead to unmaintainable 

softwares when the optimization/readability balance becomes unfavorable.

A general trend for today's heavy computational tasks is to use hardware acceleration. In 

this  case,  a  dedicated  processor  is  designed  for  a  specific  task  such  as  non  bonded 

interactions calculations. Several hardware accelerators providers are available today to 

speed  up  molecular  dynamics  programs,  such  as  ClearSpeed6 or  IBM's  MD GRAPE7. 

Interestingly, the most widely distributed processors dedicated to hardware accelerations 

6 http://www.clearspeed.com  

7 http://www.research.ibm.com/grape  
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are the Graphic Processor Units (GPU) of general purpose graphics card. These highly 

specialized  processors  are  much  cheaper  and  progressively  adapted  to  more  general 

tasks8 thanks to the active participation of the two manufacturers delivering the fastest 

solutions, NVIDIA and ATI. The MD simulation software GROMACS has been ported on 

such architecture, and is used by the Folding@home project9.

Such optimizations by hardware acceleration are currently being carried out in the SIB 

and are likely to have interesting consequences on the speed of CHARMM, and thus on 

the speed of EADock.

8.1.2.2.2 Parallelization

The single-CPU performance of CHARMM is a clear limitation of EADock today, and the 

optimization of an existing software as mentioned above requires expert knowledge and 

may  takes  time.  Intrinsically,  evolutionary  algorithms  are  embarrassingly  parallel 

problems  that  can  be  dramatically  accelerated  by  spreading  the  calculations  among 

several processors or machines.

The first approach is to split the generation of children and the fitness evaluation among 

several machines. Such a fine granularity is likely to be efficient, but the evolutionary 

process  will  have to  wait  until  the  slowest  job has  been completed,  and the queuing 

system must be much faster than the individual jobs.

The second and more interesting approach is to have an evolutionary process on each 

CPU core, all of them being organized in so-called island models [22]. Such a distribution 

allows the preservation of the diversity in the different populations, and was found to be 

more  reliable  than  a  single  evolutionary  process  [22].  The  scaling  is  expected  to  be 

extremely good even on slow networks because the required bandwidth is very low: only 

the most interesting binding modes are exchanged between the populations (Figure 49)

Island  parallelization  is  technically  easy  to  deploy  in  a  research  environment,  where 

several computers are usually available. Modern CPUs are so fast that they are waiting 

8 http://www.gpgpu.org  

9 http://folding.stanford.edu  
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most of the time and a parallelization on workstations allows a more rational usage of the 

computing  resources.  Nowadays,  there  is  a  great  interest  in  such  grid  computing 

approaches like Swiss Bio Grid (http://www.swissbiogrid.org). A flexible implementation of 

the parallelization through such island models is available in EADock.

Alternatively, the growing online community using broadband Internet access inspired the 

BOINC project [http://boinc.berkeley.edu]. The high number of CPU available should not 

hide that their reliability decreases as the time required by a job increases. Several issues 

can be  pointed  out  with  these  projects,  such  as  the  most  commonly  found operating 

system,  Microsoft®  Windows® (which  only  has  a  limited  uptime),  the  license  of  the 

programs distributed and the legal issues that may be raised if  an interesting results 

comes out.

8.1.2.3 Output

Once a docking run is launched, its status can be monitored in a text file. Unfortunately, 

this output has not been assigned to a single object responsible for the interaction with 

the user,  but is  spread among many objects.  This  should be addressed in the coming 
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Figure 49: Example of a topology achievable with EADock. The migrations of interesting  

binding modes is represented by arrows.
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releases. An exception framework catching CHARMM crashes should also be implemented 

to help understanding what has gone wrong.

Once complete, the binding modes predicted by EADock are dumped in CRD format, so 

that  they  can  be  easily  read  by  CHARMM  or  translated  into  PDB  and  visualized.  A 

visualization tool for the docking outputs is available in UCSF Chimera. Although it has 

been implemented for DOCK, the docking results from EADock can be loaded and nicely 

represented/filtered (see Figure 50).

An extension to ViewDock would be interesting to implement in order to take into account 

the specific features of EADock, for instance to select and represent clusters of binding 

modes easily, or to map energy differences into color space.

Finally, due to the huge amount of information processed during a docking run, a bridge 

between EADock and a database should be implemented, to allow an easy mining of the 
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evolutionary process and an easier access to decoys. Such a database would be much 

more convenient than a flat file storage to centralize several tens of dockings for several 

tens of  projects.  Such a database is  currently  being developed (see  Figure 51) and a 

putative information pipeline is depicted in Figure 52.
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Figure 51: EADockDB overview

Figure 52: Information flowchart
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8.2 Conclusion

While the docking accuracy has been found to be relevant (see Chapter 2 “Material and 

Methods” and  [70],  and while the software usability led to satisfying applications (see 

Chapter  3  “Applications”),  the  methodological  and  software  developments  are  not 

stopped. On the contrary, 32 new versions of EADock were released between June 2006 

and January 2007, implementing most of the features described in this chapter. Today, the 

bottleneck is certainly the lack of a clean database to benchmark these improvements. To 

this aim, a deep inspection and manual curation of the LPDB is currently being performed 

in our group by Vincent Zoete.
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9 Conclusion

Theoretical  molecular  docking  approaches  are  complementary  to  in  vitro and  in  vivo 

experiments,  and  help  the  interpretation  of  biological  observations.  They  can  help 

understanding  the  key  molecular  interactions  between a  ligand  and  its  receptor,  and 

provide  information  for  efficient  structure-based  molecular  design  of  new  active 

compounds.  Moreover,  they  can  help  reducing  the  number  of  biological  assays  by 

providing criteria to focus on a subset of a large collections of molecules. On the other 

hand,  experimental  data  is  key  to  successful  development  of  theoretical  tools.  This 

synergy between theoretical  and experimental  approaches is  crucial  for  a  satisfactory 

evolution  of  biology,  pharmacology  and  medicine.  Such  a  so-called  “translational 

research”,  where  the  usual  “bench-to-bed”  one-way  processing  of  biological/medical 

knowledge  is  replaced  by  a  two-way  communication,  is  believed  to  shorten  the  path 

toward drug delivery to the patient.
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